
	Joint Video Team (JVT) of ISO/IEC MPEG & ITU-T VCEG

(ISO/IEC JTC1/SC29/WG11 and ITU-T SG16 Q.6)

16th Meeting: Poznan, PL, 23-29 July, 2005
	Document: JVT-P014
Filename: JVT-P014.doc

	Title:
	Hierarchical B pictures

	Status:
	Input Document to JVT

	Purpose:
	Information

	Author(s) or
Contact(s):
	Heiko Schwarz, Detlev Marpe, and Thomas Wiegand
Fraunhofer HHI
Einsteinufer 37
10587 Berlin, Germany
	
Tel:
Email:
	
+49-30-31002-226 / 619 / 617
hschwarz@hhi.fhg.de
marpe@hhi.fhg.de
wiegand@hhi.fhg.de

	Source:
	Fraunhofer HHI

Abstract

In this document, we present an investigation of H.264/MPEG4-AVC compatible encoding with hierarchical B pictures. We analyze the memory requirements, describe modifications of the encoder control compared to the H.264/MPEG4-AVC Test Model which improve the coding efficiency for hierarchical B pictures, and present a comparison of the coding efficiency for different GOP sizes (number of hierarchy stages) and a wide range of test sequences. The simulation results show that in comparison to the classical “IBBP…” coding, the coding efficiency can be improved by up to 1.5 dB just by modifying the coding structure. Furthermore, the usage of hierarchical B pictures does not only improve the objective quality for the majority of test sequences, but also the subjective quality especially for sequences with fine-detailed slow/regular moving image regions.
1 Introduction

During the investigation of techniques for scalable video coding it turned out that coding structures using so-called hierarchical B pictures lead to an improved coding efficiency compared to a coding with the classical “IBBP…” structure for a wide range of test sequences. For example, in [1] several simulation results are shown that compare the coding efficiency of H.264/MPEG4-AVC using an “IBBP…” coding structure with the coding efficiency of an MCTF extension of H.264/MPEG4-AVC. The only differences between the H.264/MPEG-4 compatible encoding and the encoding with the MCTF extension are the prediction structure as well as the constrained intra prediction, the open-loop encoder control, and the motion-compensated update steps of the MCTF extension. These results showed that the MCTF extension, which uses a hierarchical structure with groups of 32 pictures, lead to an increased coding efficiency in comparison to the “IBBP…” coding with standard H.264/MPEG-4 for all 12 tested sequences.
A further analysis of these results turned out that the major part of the reported gains comes from the hierarchical coding structure, and not from the additional motion-compensated update steps that are performed in the MCTF extension. Of course, the open-loop encoder control and the constrained intra prediction do not improve the coding efficiency, quite the contrary is the case, since with unconstrained intra prediction and a closed-loop encoder control the coding efficiency can further be improved. The analysis further showed that for nearly all test sequences (the only exception that we have found so far is the sequence “City”), a standard compliant H.264/MPEG4-AVC coding with the same hierarchical prediction structure as in the MCTF extension and a closed-loop control outperforms the MCTF extension with open-loop control and the additional motion-compensated update steps.
In section 2, we briefly review H.264/MPEG4-AVC compliant coding with hierarchical B pictures and present an analysis of the memory requirements for the DPB. In section 3, we describe several modifications of the H.264/MPEG4-AVC Test Model [2] that are important for achieving a reasonable coding efficiency when using hierarchical coding structures. Finally, in section 4 we compare the coding efficiency for different GOP sizes or number of hierarchy stages with the popular “IPPP…”, “IBPBP…”, and “IBBP…” coding structures.
2 Coding with Hierarchical B Pictures

The increased flexibility of H.264/MPEG4-AVC in comparison to older video coding standard as MPEG-2 Visual, MPEG-4 Visual, or H.263 is one of the main reasons for its improved coding efficiency. The flexibility at a macroblock level, which is significantly increased by the support of various intra prediction modes as well as much more macroblock partitioning modes for motion-compensated prediction than in any older video coding standard, has been well studied. However, H.264/MPEG4-AVC also supports much more flexibility at a picture/sequence level. In contrast to older video coding standards, the coding and display order of pictures is completely decoupled. Furthermore any picture can be marked as reference picture and used for motion-compensated prediction of following pictures independent of the coding types of the corresponding slices. The behavior of the decoded picture buffer (DPB), which can hold up to 16 pictures, can be adaptively controlled by memory management control operation (MMCO) commands, and the reference pictures of the DPB that are used for motion-compensated prediction of another picture can be arbitrarily selected via reference picture list re-ordering (RPLR) commands.
These features of H.264/MPEG4-AVC allow the selection of arbitrary coding/prediction structures, which are not possible with older video coding standards. The development of the first Working Draft for the SVC standard turned out that the coding efficiency of H.264/MPEG-4 can be increased in comparison to the classical “IBBP…” coding, when prediction structures with hierarchical B pictures are used.
A typical hierarchical prediction structure with 4 dyadic hierarchy stages is depicted in Figure 1. The first picture of a video sequence is intra-coded as IDR picture; so-called key pictures (black in Figure 1) are coded in regular (or even irregular) intervals. At this, a picture is called a key picture when all previously coded pictures precede this picture in display order. As illustrated in Figure 1, a key picture and all pictures that are temporally located between the key picture and the previous key picture (the IDR picture at the beginning of a video sequence is also a key picture) are considered to build a group of pictures (GOP). The key pictures are either intra-coded (e.g. in order to enable random access) or inter-coded using previous (key) pictures as reference for motion compensated prediction. The remaining pictures of a GOP are hierarchically predicted as illustrated in Figure 1.
[image: image43.wmf]I

0

/P

0

B

1

B

2

B

3

I

0

/P

0

I

0

/P

0

B

3

B

3

B

3

B

3

B

3

B

3

B

3

B

2

B

2

B

2

B

1

0

12

2

1

8

16

7

9

15

3

5

11

13

6

10

14

4

display order

group of pictures (GOP)

group of pictures (GOP)

I

0

/P

0

B

1

B

2

B

3

I

0

/P

0

I

0

/P

0

B

3

B

3

B

3

B

3

B

3

B

3

B

3

B

2

B

2

B

2

B

1

0

12

2

1

8

16

7

9

15

3

5

11

13

6

10

14

4

display order

group of pictures (GOP)

group of pictures (GOP)

Figure 1: Dyadic hierarchical coding structure with 4 temporal levels and a GOP size of 8. Each B pictures is predicted using 2 reference pictures, which are the nearest pictures of the lower temporal level from the past and the future.
It is obvious that such a hierarchical prediction structure can also be employed for supporting several temporal scalability levels. Therefore, it has to be ensured that all pictures are predicted by using only pictures of a coarser or the same temporal level as references (cp. Figure 1). Then the sequence of key pictures represents the coarsest supported temporal resolution, and this temporal resolution can be refined by adding the sub-sequences of the next temporal levels. The dyadic hierarchy as depicted in Figure 1, in which key pictures are only predicted from other key pictures, and the non-key pictures are predicted by using only the nearest pictures of the lower temporal level from the past and the future, can always by used for providing temporal scalability.
The usage of hierarchical coding structures is of course not restricted to the dyadic case. Our experiments showed that also the usage of non-dyadic hierarchical prediction structures improve the coding efficiency in comparison to the classical “IBBP…” coding for all tested sequences. Figure 2 illustrates an example of a non-dyadic hierarchical prediction structure with 4 temporal levels and a GOP size of 12 pictures.
[image: image44.wmf]I

0

/P

0

I

0

/P

0

B

3

B

3

B

3

B

3

B

2

B

2

B

3

B

3

B

1

B

3

B

3

0

12

2

1

8

7

9

3

5

11

6

10

4

display order

I

0

/P

0

I

0

/P

0

B

3

B

3

B

3

B

3

B

2

B

2

B

3

B

3

B

1

B

3

B

3

0

12

2

1

8

7

9

3

5

11

6

10

4

display order

Figure 2: Hierarchical non-dyadic coding structure with 4 temporal levels and a GOP size of 12.
In the examples of Figure 1 and Figure 2, key pictures are either intra-coded or predicted using only previous key pictures as references, and the non-key pictures are predicted using only the nearest pictures of the lower temporal level from the past and the future as references. It should be noted that the maximum number of reference pictures that were utilized to code a picture is 2. However, the coding efficiency may be further improved when more pictures are included in the corresponding reference pictures lists, and the multiple reference picture concept of H.264/MPEG4-AVC is used for motion-compensated prediction. When temporal scalability should be supported, the reference picture lists have to be selected in a way (by appropriate reference picture re-ordering commands) that only pictures that belong to a coarser or the same temporal level as the current picture are included in the reference picture lists.
Although in this document we present only simulation results with fixed prediction structures, the prediction structure or GOP size can be adaptively controlled over time. From a coding efficiency point a view, smaller GOP sizes are generally preferred for fast and/or irregular moving sequence parts while larger GOP sizes are preferred for slow and/or regular moving sequence parts. Since the motion characteristic of a video sequence generally varies over time, an adaptive control of the GOP size can further improve the coding efficiency. In [3], it was shown that an adaptive GOP size selection improves the coding efficiency over the best fixed GOP size selection by up to 0.6 dB for the scalable H.264/MPEG4-AVC extension. It is expected the similar gain could also be achieved with standard compliant H.264/MPEG4-AVC coding.
2.1 Coding Order, Memory Requirements, and Temporal Scalability

The coding order for hierarchical prediction structures has to be chosen in a way the pictures that are used as reference for motion-compensated prediction of other pictures have to be encoded before the corresponding pictures that use these pictures for motion-compensated prediction. That means especially that a key picture, which is generally located at the end of a complete group of pictures (cp. Figure 1 and Figure 2), has to be encoded as the first picture of a GOP. For the coding order of the non-key pictures in general several possibilities exists, which mostly differ in the associated decoding delay.
For the following analysis of the memory requirements we restrict ourselves to the hierarchical B picture coding with dyadic prediction structures as illustrated in Figure 3. However, the analysis is also valid for non-dyadic hierarchical prediction structures, since the memory requirements for the coding methods described in the following are either dependent on the number of pictures at a specific hierarchy level or on the number of hierarchy stages.
We have chosen a coding order that always minimizes the associated decoding delay. The encoding delay is independent of the coding order inside a group of pictures; it only depends on the maximum GOP size or the maximum temporal distance between the key pictures. The coding order inside a GOP is determined as follows (see Figure 3). First all pictures that are directly or indirectly used for motion-compensated prediction of the first picture (in display order) of a GOP and the first picture itself are coded. For the example in Figure 3 that means that first the key picture (16), and then the first pictures of all hierarchy stages (8, 4, 2, and 1) are coded. Then, all pictures that are required for coding the second picture of a GOP and the second picture itself are encoded as long as they haven’t been encoded yet, and so on. In Figure 3, this coding order is illustrated for two groups of 16 pictures. Note, that the restriction to the described coding order does not influence the analysis of the memory requirements; it can be easily seen that it is not possible to find a coding order, which can be realized with a smaller decoded picture buffer.
[image: image1.wmf]I

0

B

1

B

2

B

3

P

0

P

0

B

3

B

3

B

3

B

3

B

3

B

3

B

3

B

2

B

2

B

2

B

1

0

24

4

2

16

32

14

18

30

6

10

22

26

12

20

28

8

display order

group of pictures (GOP)

group of pictures (GOP)

B

4

B

4

B

4

B

4

B

4

B

4

B

4

B

4

B

4

B

4

B

4

B

4

B

4

B

4

B

4

B

4

1

25

5

3

17

15

19

31

7

11

23

27

13

21

29

9

0

18

3

4

1

17

14

20

30

7

11

23

27

10

19

26

2

coding order

5

28

8

6

21

16

22

32

9

13

25

29

15

24

31

12

I

0

B

1

B

2

B

3

P

0

P

0

B

3

B

3

B

3

B

3

B

3

B

3

B

3

B

2

B

2

B

2

B

1

0

24

4

2

16

32

14

18

30

6

10

22

26

12

20

28

8

display order

group of pictures (GOP)

group of pictures (GOP)

B

4

B

4

B

4

B

4

B

4

B

4

B

4

B

4

B

4

B

4

B

4

B

4

B

4

B

4

B

4

B

4

1

25

5

3

17

15

19

31

7

11

23

27

13

21

29

9

0

18

3

4

1

17

14

20

30

7

11

23

27

10

19

26

2

coding order

5

28

8

6

21

16

22

32

9

13

25

29

15

24

31

12

Figure 3: Hierarchical dyadic coding structure with 5 hierarchy levels, a GOP size of 32, and an example for a coding order with minimum decoding delay.
In the following, we present 4 methods for controlling the memory requirements for the coding with hierarchical B pictures. We start with the default sliding window marking process, and show different strategies that can be used for minimizing the memory requirements by controlling the pictures that are stored in the DPB and marked as “used for reference” via MMCO commands. All 4 strategies have in common that the pictures of the highest temporal level (pictures B4 in Figure 3) are coded as non-reference pictures. These pictures don’t need to be stored in the DPB; they can be outputted just after decoding, since a re-ordering of these non-reference pictures in not required with the given coding order. Thus, the required DPB size (in pictures) is equal to the number of reference pictures that need to be stored, and thus also equal to the minimum possible value of the syntax element num_ref_frames of the sequence parameter set.

In order to limit the problem to a level that is easy to describe, we restricted ourselves to the case where key pictures are only predicted from the previous key picture, and non-key pictures are only predicted from the nearest past and future picture of the next hierarchy level as illustrated in Figure 1, Figure 2, and Figure 3. In general, it is still possible to use multiple reference pictures for motion-compensated prediction, since the DPB will mostly hold additional pictures that are marked as “used for reference”. However, when a temporal scalable bit-stream should be generated, additional reference picture re-ordering commands are generally required. And when specific multiple reference pictures should be used for the prediction, the required DPB size is generally increased. These cases can be analyzed by similar considerations.
2.1.1 Method 1: Default Sliding Window Marking Process
In Table 1, the hierarchical B picture coding with the sliding window marking process and the corresponding DPB status are analyzed for the example in Figure 3. The minimum DPB size (in pictures) and thus also the minimum value of the syntax element num_ref_frames is 12. The most critical pictures to encode with respect to the required DPB size are the first pictures of a GOP (pictures 17, 33, etc. in display order), since for these pictures both the key picture of the previous GOP and the following picture of the next higher hierarchy level have to be stored in the DPB and marked as “used for reference” (cp. markings in Table 1). Since the key picture is the first picture that is bumped out, the minimum DPB size (and the minimum size of the syntax element num_ref_frames) is equal to the number NR of reference pictures inside a GOP plus the number of hierarchy stages HR, for which the pictures are marked as “used for reference”.
Table 1: Analysis of the DPB status for the example in Figure 3, when the coding is realized with the default sliding window algorithm (method 1).
	coding number
	display number (possible POC)
	marked as “used for reference”
	re-ordering commands required
(when number of active entries in the reference picture lists in equal to 1)
	status of the DPB after coding the picture
(the pictures are represented by their display number;
 the DPB size and the syntax element num_ref_frames are set to the minimum possible value of 12)

	0
	0
	yes
	n. a.
	 0

	1
	16
	yes
	n. a.
	 0, 16

	2
	8
	yes
	not required
	 0, 16, 8

	3
	4
	yes
	not required
	 0, 16, 8, 4

	4
	2
	yes
	not required
	 0, 16, 8, 4, 2

	5
	1
	no
	not required
	 0, 16, 8, 4, 2

	6
	3
	no
	not required
	 0, 16, 8, 4, 2

	7
	6
	yes
	not required
	 0, 16, 8, 4, 2, 6

	8
	5
	no
	not required
	 0, 16, 8, 4, 2, 6

	9
	7
	no
	not required
	 0, 16, 8, 4, 2, 6

	10
	12
	yes
	not required
	 0, 16, 8, 4, 2, 6, 12

	11
	10
	yes
	not required
	 0, 16, 8, 4, 2, 6, 12, 10

	12
	9
	no
	not required
	 0, 16, 8, 4, 2, 6, 12, 10

	13
	11
	no
	not required
	 0, 16, 8, 4, 2, 6, 12, 10

	14
	14
	yes
	not required
	 0, 16, 8, 4, 2, 6, 12, 10, 14

	15
	13
	no
	not required
	 0, 16, 8, 4, 2, 6, 12, 10, 14

	16
	15
	no
	not required
	 0, 16, 8, 4, 2, 6, 12, 10, 14

	17
	32
	yes
	required
	 0, 16, 8, 4, 2, 6, 12, 10, 14, 32

	18
	24
	yes
	not required
	 0, 16, 8, 4, 2, 6, 12, 10, 14, 32, 24

	19
	20
	yes
	not required
	 0, 16, 8, 4, 2, 6, 12, 10, 14, 32, 24, 20

	20
	18
	yes
	not required
	16, 8, 4, 2, 6, 12, 10, 14, 32, 24, 20, 18

	21
	17
	no
	not required
	16, 8, 4, 2, 6, 12, 10, 14, 32, 24, 20, 18

	22
	19
	no
	not required
	16, 8, 4, 2, 6, 12, 10, 14, 32, 24, 20, 18

	23
	22
	yes
	not required
	 8, 4, 2, 6, 12, 10, 14, 32, 24, 20, 18, 22

	24
	21
	no
	not required
	 8, 4, 2, 6, 12, 10, 14, 32, 24, 20, 18, 22

	25
	23
	no
	not required
	 8, 4, 2, 6, 12, 10, 14, 32, 24, 20, 18, 22

	26
	28
	yes
	not required
	 4, 2, 6, 12, 10, 14, 32, 24, 20, 18, 22, 28

	27
	26
	yes
	not required
	 2, 6, 12, 10, 14, 32, 24, 20, 18, 22, 28, 26

	28
	25
	no
	not required
	 2, 6, 12, 10, 14, 32, 24, 20, 18, 22, 28, 26

	29
	27
	no
	not required
	 2, 6, 12, 10, 14, 32, 24, 20, 18, 22, 28, 26

	30
	30
	yes
	not required
	 6, 12, 10, 14, 32, 24, 20, 18, 22, 28, 26, 30

	31
	29
	no
	not required
	 6, 12, 10, 14, 32, 24, 20, 18, 22, 28, 26, 30

	32
	31
	no
	not required
	 6, 12, 10, 14, 32, 24, 20, 18, 22, 28, 26, 30

	33
	48
	yes
	required
	12, 10, 14, 32, 24, 20, 18, 22, 28, 26, 30, 48

	…
	…
	…
	…
	…

Since the reference picture lists for B pictures are ordered based on the POC values, no reference picture list re-ordering commands are required for the B pictures, when the number of active entries in both reference picture lists is equal to 1. However, for the key pictures, which are assumed to be coded using the P slice syntax, the default reference picture lists are constructed based on the syntax elements frame_num, which is increased in coding order. Thus, for the key pictures, reference picture list re-ordering (RPLR) commands need to be specified in the slice headers to ensure that the key picture of the previous GOP is included at the first position in the reference picture list.
2.1.2 Method 2: MMCO 1 in Key Pictures

The required DPB size for the sliding window algorithm can be reduced when the pictures of the previous GOP that are not required for the motion-compensated prediction of the pictures of the current GOP – that is all non-key pictures of the previous GOP – are marked as “unused for reference” when the first picture, i.e. the key picture, of the GOP is coded. A corresponding coding example is illustrated in Table 2. MMCO 1 commands that mark all pictures of the previous GOP except the key picture as “unused for reference” are included in the slice headers of the key pictures. The minimum required DBP size (in pictures) is now equal to the number NR of reference pictures inside a GOP; in case that 2 or 3 hierarchy stages are coded, a DPB size of NR + 1 pictures is required. Similar to method 1, reference picture list re-ordering commands are only needed for key pictures (when the number of active entries in reference picture lists 0 and 1 (when applicable) is always equal to 1).
Table 2: Analysis of the DPB status for the example in Figure 3, when the coding is realized with MMCO 1 commands in the key pictures (method 2).
	coding number
	display number (possible POC)
	marked as “used for reference”
	re-ordering commands required
(when number of active entries in the reference picture lists in equal to 1)
	MMCO 1 commands
(value of the syntax elements difference_of_
pic_nums_minus1)
	status of the DPB after coding the picture
(the pictures are represented by their display number;
 the DPB size and the syntax element num_ref_frames are set to the minimum possible value of 8)

	0
	0
	yes
	n.a.
	
	 0

	1
	16
	yes
	n.a.
	
	 0, 16

	2
	8
	yes
	not required
	
	 0, 16, 8

	3
	4
	yes
	not required
	
	 0, 16, 8, 4

	4
	2
	yes
	not required
	
	 0, 16, 8, 4, 2

	5
	1
	no
	not required
	
	 0, 16, 8, 4, 2

	6
	3
	no
	not required
	
	 0, 16, 8, 4, 2

	7
	6
	yes
	not required
	
	 0, 16, 8, 4, 2, 6

	8
	5
	no
	not required
	
	 0, 16, 8, 4, 2, 6

	9
	7
	no
	not required
	
	 0, 16, 8, 4, 2, 6

	10
	12
	yes
	not required
	
	 0, 16, 8, 4, 2, 6, 12

	11
	10
	yes
	not required
	
	 0, 16, 8, 4, 2, 6, 12, 10

	12
	9
	no
	not required
	
	 0, 16, 8, 4, 2, 6, 12, 10

	13
	11
	no
	not required
	
	 0, 16, 8, 4, 2, 6, 12, 10

	14
	14
	yes
	not required
	
	16, 8, 4, 2, 6, 12, 10, 14

	15
	13
	no
	not required
	
	16, 8, 4, 2, 6, 12, 10, 14

	16
	15
	no
	not required
	
	16, 8, 4, 2, 6, 12, 10, 14

	17
	32
	yes
	required
	0, 1, 2, 3, 4, 5, 6
	16, 32

	18
	24
	yes
	not required
	
	16, 32, 24

	19
	20
	yes
	not required
	
	16, 32, 24, 20

	20
	18
	yes
	not required
	
	16, 32, 24, 20, 18

	21
	17
	no
	not required
	
	16, 32, 24, 20, 18

	22
	19
	no
	not required
	
	16, 32, 24, 20, 18

	23
	22
	yes
	not required
	
	16, 32, 24, 20, 18, 22

	24
	21
	no
	not required
	
	16, 32, 24, 20, 18, 22

	25
	23
	no
	not required
	
	16, 32, 24, 20, 18, 22

	26
	28
	yes
	not required
	
	16, 32, 24, 20, 18, 22, 28

	27
	26
	yes
	not required
	
	16, 32, 24, 20, 18, 22, 28, 26

	28
	25
	no
	not required
	
	16, 32, 24, 20, 18, 22, 28, 26

	29
	27
	no
	not required
	
	16, 32, 24, 20, 18, 22, 28, 26

	30
	30
	yes
	not required
	
	32, 24, 20, 18, 22, 28, 26, 30

	31
	29
	no
	not required
	
	32, 24, 20, 18, 22, 28, 26, 30

	32
	31
	no
	not required
	
	32, 24, 20, 18, 22, 28, 26, 30

	33
	48
	yes
	required
	0, 1, 2, 3, 4, 5, 6
	32, 48

	…
	…
	…
	…
	
	…

2.1.3 Method 3: MMCO 1 in All Non-Key Reference Pictures

When analyzing the memory requirements for the hierarchical coding more accurately, it is obvious that only the surrounding 2 key pictures and 1 picture for each hierarchy level – with exception of the last hierarchy level, for which all pictures are coded as non-reference pictures – have to be marked as “used for reference”. This can be realized by the following strategy. When coding a picture of hierarchy level k that is not the highest or lowest hierarchy level, the last picture of this hierarchy level k that is stored in the DPB and marked as “used for reference” is marked as “unused for reference” via an MMCO 1 command. When coding a key picture, the key picture before the last key picture is marked as “unused for reference”, this can be either realized by MMCO 1 commands or simply by the default sliding window marking process (see Table 3). This procedure is illustrated in Table 3. The minimum required DPB size is equal to the number of hierarchy levels H). Similar to method 1 and 2, RPLR commands are only required for the coding of key pictures (when the number of active entries in reference picture lists 0 and 1 (when applicable) is always equal to 1).
Table 3: Analysis of the DPB status for the example in Figure 3, when the coding is realized with MMCO 1 commands in all non-key reference pictures (method 3).
	coding number
	display number (possible POC)
	marked as “used for reference”
	re-ordering commands required
(when number of active entries in the reference picture lists in equal to 1)
	MMCO 1 commands
(value of the syntax elements difference_of_
pic_nums_minus1)
	status of the DPB after coding the picture
(the pictures are represented by their display number;
 the DPB size and the syntax element num_ref_frames are set to the minimum possible value of 5)

	0
	0
	yes
	n.a.
	
	 0

	1
	16
	yes
	n.a.
	
	 0, 16

	2
	8
	yes
	not required
	
	 0, 16, 8

	3
	4
	yes
	not required
	
	 0, 16, 8, 4

	4
	2
	yes
	not required
	
	 0, 16, 8, 4, 2

	5
	1
	no
	not required
	
	 0, 16, 8, 4, 2

	6
	3
	no
	not required
	
	 0, 16, 8, 4, 2

	7
	6
	yes
	not required
	0
	 0, 16, 8, 4, 6

	8
	5
	no
	not required
	
	 0, 16, 8, 4, 6

	9
	7
	no
	not required
	
	 0, 16, 8, 4, 6

	10
	12
	yes
	not required
	2
	 0, 16, 8, 6, 12

	11
	10
	yes
	not required
	1
	 0, 16, 8, 12, 10

	12
	9
	no
	not required
	
	 0, 16, 8, 12, 10

	13
	11
	no
	not required
	
	 0, 16, 8, 12, 10

	14
	14
	yes
	not required
	0
	 0, 16, 8, 12, 14

	15
	13
	no
	not required
	
	 0, 16, 8, 12, 14

	16
	15
	no
	not required
	
	 0, 16, 8, 12, 14

	17
	32
	yes
	required
	
	16, 8, 12, 14, 32

	18
	24
	yes
	not required
	7
	16, 12, 14, 32, 24

	19
	20
	yes
	not required
	4
	16, 14, 32, 24, 20

	20
	18
	yes
	not required
	3
	16, 32, 24, 20, 18

	21
	17
	no
	not required
	
	16, 32, 24, 20, 18

	22
	19
	no
	not required
	
	16, 32, 24, 20, 18

	23
	22
	yes
	not required
	0
	16, 32, 24, 20, 22

	24
	21
	no
	not required
	
	16, 32, 24, 20, 22

	25
	23
	no
	not required
	
	16, 32, 24, 20, 22

	26
	28
	yes
	not required
	2
	16, 32, 24, 22, 28

	27
	26
	yes
	not required
	1
	16, 32, 24, 28, 26

	28
	25
	no
	not required
	
	16, 32, 24, 28, 26

	29
	27
	no
	not required
	
	16, 32, 24, 28, 26

	30
	30
	yes
	not required
	0
	16, 32, 24, 28, 30

	31
	29
	no
	not required
	
	16, 32, 24, 28, 30

	32
	31
	no
	not required
	
	16, 32, 24, 28, 30

	33
	48
	yes
	required
	
	32, 24, 28, 30, 48

	…
	…
	…
	…
	…
	…

In contrast to method 1 and 2, the described strategy for controlling the DPB is not suitable for temporal scalable coding. When only the pictures of coarser temporal levels are transmitted, the missing reference pictures are stored in the DPB and marked as “not existing” and “used for reference”. Since, the MMCO 1 commands that mark these pictures as “unused for reference” are not present in the corresponding sub-stream, pictures of the coarser temporal levels that are still required for the prediction of following pictures are marked as “unused for reference” by the sliding window marking process. As a further consequence, actual present MMCO 1 commands are not allowed, since they refer to pictures that have already been marked as “unused for reference”. Note, that it is not possible to “repeat” the required MMCO commands in the next pictures of the coarser hierarchy levels, since marking pictures as “unused for reference” that are already marked as “unused for reference” is not allowed by the standard.
2.1.4 Method 4: Exclusively Using Long-Term Pictures
When the general idea of method 3 (see sec. 2.1.3) is realized with long-term pictures, it is possible to realize the hierarchical B picture coding with the same minimum DPB size (that is equal to the number of hierarchy levels H), but also in a temporal scalable way. This is illustrated in Table 4. The long-term frame indices 0 and 1 are reserved for the key pictures. When a new key picture is coded, it replaces the key picture before the last key picture. Furthermore, another long-term frame index is reserved for each hierarchy level, for which the pictures have to be stored as reference pictures. When a picture of such a hierarchy level is received, it replaces the last stored picture of this hierarchy level in the DPB. In the slice header of the first key picture after the IDR picture, also an MMCO 4 command, which sets the maximum long term frame index, has to be included.
Table 4: Analysis of the DPB status for the example in Figure 3, when the coding is realized by exclusively storing pictures as long-term reference pictures (method 4).
	coding number
	display number (possible POC)
	marked as “used for reference”
	re-ordering commands required
(when number of active entries in the reference picture lists in equal to 1)
	MMCO 6 commands
(value of the syntax elements long_term_frame_idx)
	status of the DPB after coding the picture
(the pictures are represented by their display number;
the DPB size and the syntax element num_ref_frames are set to the minimum possible value of 5;

the pictures are sorted by their LongTermFrameIdx)

	0
	0
	yes
	n.a.
	(long_term_
reference_flag = 1)
	 0

	1
	16
	yes
	n.a.
	1 (+ MMCO 4)
	 0, 16

	2
	8
	yes
	required
	2
	 0, 16, 8

	3
	4
	yes
	required
	3
	 0, 16, 8, 4

	4
	2
	yes
	required
	4
	 0, 16, 8, 4, 2

	5
	1
	no
	required
	
	 0, 16, 8, 4, 2

	6
	3
	no
	required
	
	 0, 16, 8, 4, 2

	7
	6
	yes
	required
	4
	 0, 16, 8, 4, 6

	8
	5
	no
	required
	
	 0, 16, 8, 4, 6

	9
	7
	no
	required
	
	 0, 16, 8, 4, 6

	10
	12
	yes
	required
	3
	 0, 16, 8, 12, 6

	11
	10
	yes
	required
	4
	 0, 16, 8, 12, 10

	12
	9
	no
	required
	
	 0, 16, 8, 12, 10

	13
	11
	no
	required
	
	 0, 16, 8, 12, 10

	14
	14
	yes
	required
	3
	 0, 16, 8, 12, 14

	15
	13
	no
	required
	
	 0, 16, 8, 12, 14

	16
	15
	no
	required
	
	 0, 16, 8, 12, 14

	17
	32
	yes
	required
	0
	32, 16, 8, 12, 14

	18
	24
	yes
	required
	2
	32, 16, 24, 12, 14

	19
	20
	yes
	required
	3
	32, 16, 24, 20, 14

	20
	18
	yes
	required
	4
	32, 16, 24, 20, 18

	21
	17
	no
	required
	
	32, 16, 24, 20, 18

	22
	19
	no
	required
	
	32, 16, 24, 20, 18

	23
	22
	yes
	required
	4
	32, 16, 24, 20, 22

	24
	21
	no
	required
	
	32, 16, 24, 20, 22

	25
	23
	no
	required
	
	32, 16, 24, 20, 22

	26
	28
	yes
	required
	3
	32, 16, 24, 28, 22

	27
	26
	yes
	required
	4
	32, 16, 24, 28, 26

	28
	25
	no
	required
	
	32, 16, 24, 28, 26

	29
	27
	no
	required
	
	32, 16, 24, 28, 26

	30
	30
	yes
	required
	4
	32, 16, 24, 28, 30

	31
	29
	no
	required
	
	32, 16, 24, 28, 30

	32
	31
	no
	required
	
	32, 16, 24, 28, 30

	33
	48
	yes
	not required
	1
	32, 48, 24, 28, 30

	…
	…
	…
	…
	…
	…

Now, when only coarser temporal levels are transmitted, these pictures are stored as non-existing short-term reference pictures, and are regularly marked as “unused for reference” by the default sliding window algorithms and without violating the memory constraints. This does not influence the actual transmitted pictures since these are stored as long-term reference pictures.

One minor drawback of this strategy is that RPLR commands are required for all pictures with exception of every second key picture, since the default reference list construction process sorts the long-term pictures by their long-term frame index.
2.1.5 Summary

Table 5 show a comparison of the 4 presented strategies for controlling the status of the decoded picture buffer for the coding with hierarchical B pictures. Note, that with method 1 (default sliding window marking process) the maximum possible GOP size for dyadic hierarchical B picture coding is 16, with method 2 it is 32, and with the methods 3 and 4 it is virtually unconstrained (2^15 = 32768). Method 1, 2, and 4 allow temporal scalable encoding, while with method 3 only 2 levels of temporal scalability (reference and non-reference pictures) can be supported. With the coding example of Table 6 it is illustrated that the additional bit-rate that is needed for transmitting the required MMCO and RPLR commands for method 4 (exclusive use of long-term pictures) could be non-negligible when small slices are coded at a relatively low bit-rates.
Table 5: Comparison of the methods for controlling the DPB status for the hierarchical B picture coding.
	
	
	Method 1
	Method 2
	Method 3
	Method 4

	GOP size (N)
	NR, H, HR
	minimum required DPB size (minimum value of num_ref_frames)

	1
	 1, 1, 1
	1
	1
	1
	1

	2 (or IBBP…)
	 1, 2, 1
	2
	2
	2
	2

	4
	 2, 3, 2
	4
	3
	3
	3

	8
	 4, 4, 3
	7
	4
	4
	4

	16
	 8, 5, 4
	12
	8
	5
	5

	32
	16, 6, 5
	not possible
	16
	6
	6

	64
	32, 7, 6
	not possible
	not possible
	7
	7

	N
	NR, H, HR
	
[image: image2.wmf]R

R

H

N

+

	
[image: image3.wmf]î

í

ì

<

<

+

otherwise

N

H

N

R

R

:

4

1

:

1

	
[image: image4.wmf]H

	
[image: image5.wmf]H

	· NR:
Number of reference pictures inside a GOP

· H:
Number of hierarchy levels (possible temporal levels)

· HR:
Number of hierarchy levels, for which the pictures as stored as reference pictures

	Max. GOP size (dyadic)
	16
	32
	32768
	32768

	Temporal scalable
	yes
	yes
	no
	yes

	Advantage
	simple
	simple
	low memory requirements
	low memory requirements

	Disadvantage
	high memory requirements
	relatively high memory requirements
	not temporal scalable;
required bit-rate for MMCO commands in nearly every picture
	required bit-rate for MMCO and RPLR commands in nearly every picture

Table 6: Coding example for 129 pictures of the sequence “City” in QCIF resolution and a frame rate of 15Hz with hierarchical B pictures and a GOP size of 32 pictures (dyadic hierarchy).
	
	Method 1
	Method 2
	Method 3
	Method 4

	Y-PSNR
	not possible
	33.60 dB
	33.60 dB
	33.60 dB

	bit-rate
	
	37.00 kbit/s
	37.09 kbit/s
	37.47 kbit/s

3 Encoder Control

We basically use the encoder control as specified in the Joint Model [2]. However, in order to improve the coding efficiency for hierarchical B pictures, some details have been changed. These changes are documented in the following subsections.

3.1 Motion Estimation and Mode Decision

The motion estimation and mode decision is performed as specified in the high-complexity mode of the Joint Model [2] with the following two modifications.
3.1.1 Derivation of the Lagrange parameters
The Langrangian parameters (MODE and (MOTION are derived independent of the actual slice coding type by

[image: image6.wmf]MODE

MOTION

QP

MODE

l

l

l

=

×

=

3

/

2

85

.

0

3.1.2 Iterative motion search for bi-predicted blocks
In the Joint Model [2], the motion vectors for bi-predictive blocks are estimated by independent motion searches for each of the reference pictures lists. However, it is a well-known fact that the coding efficiency can be significantly improved when the actual prediction error between the original and the weighted prediction signal (weighted sum of the list 0 and list 1 predictions) is considered during the motion estimation process. Thus, an optimal motion search should proceed over the product space of the list 0 and list 1 motion vectors. This would dramatically increase the encoder complexity. However, the coding efficiency for B slices can also be improved when the joint motion estimation of the list 0 and list 1 motion vectors is done via an iterative algorithm (cp. [6]

 REF _Ref107207229 \r \h
[1]

 REF _Ref107634416 \r \h
[7]).
In a first stage, the reference indices r0 and r1 and the associated motion vectors {m0} and {m1} for list 0 and list 1 prediction are determined as specified in the Joint Model [2]. Then, the reference indices rB0 and rB1 and the associated motion vectors {mB0} and {mB1} for bi-prediction are obtained by the following iterative algorithm.

· Initially, the reference indices and motion vectors for bi-prediction are set equal to the reference indices and motion vectors that have been determined for list 0 and list 1 prediction,

rB0 = r0,

mB0 = m0,
rB1 = r1,

mB1 = m1,
an iteration index iter is set equal to 0,

iter = 0

and the Lagrangian cost for bi-prediction JBi is set equal to J(rB0, rB1, {mB0}, {mB1}) with

[image: image7.wmf](

)

(

)

(

)

(

)

þ

ý

ü

î

í

ì

+

×

+

+

×

+

=

å

Î

)

(

)

(

))

(

(

))

(

(

))

(

),

(

,

,

,

(

}

{

},

{

,

,

1

0

1

0

1

0

1

0

1

0

1

0

r

R

r

R

i

R

i

R

i

i

r

r

P

D

r

r

J

SAD

P

i

SAD

i

SAD

l

l

m

m

m

m

m

m

with the distortion term being given as

[image: image8.wmf](

)

å

Î

+

+

+

+

+

+

-

=

P

j

i

y

x

ref

y

x

ref

org

SAD

m

j

m

i

l

m

j

m

i

l

j

i

l

r

r

P

D

)

,

(

1

1

1

,

0

0

0

,

1

0

1

0

2

/

1

]

,

[

]

,

[

]

,

[

)

,

,

,

,

(

m

m

The rate terms R(rk) and R(mk) specify the number of bits that are required for encoding the reference indices rk and the motion vectors mi, respectively. P represents the considered macroblock or sub-macroblock partition. And lorg[i, j] and lref,k[i, j] represent the original luminance signal and its list k prediction, respectively.
· Subsequently, in each iteration step, the following applies.

· If (iter % 2) is equal to 0, the following applies.

· A list 0 reference index r*B0 and associated list 0 motion vectors {m*B0} are determined by minimizing the following Lagrangian functional

[image: image9.wmf](

)

þ

ý

ü

î

í

ì

×

+

×

+

=

å

Î

Î

Î

)

(

))

(

(

))

(

),

(

,

,

,

(

min

min

arg

0

0

1

B

0

1

0

)

(

*

0

0

*

0

0

0

r

R

i

R

i

i

r

r

P

D

r

SAD

P

i

SAD

B

i

SAD

S

R

r

B

B

l

l

m

m

m

m

m

where the search range S*(mB0(i)) specifies a small search area (of for example 4x4 luma samples) around the motion vector mB0(i).
· If the associated cost measure Jiter = J(r*B0, rB1, {m*B0}, {mB1}) is less than the minimum cost measure JBi, the list 0 reference index r*B0 is assigned to rB0 and the associated list 0 motion vectors {m*B0} are assigned to {mB0}.

· Otherwise ((iter % 2) is equal to 1), the following applies.

· A list 1 reference index r*B1 and associated list 1 motion vectors {m*B1} are determined by minimizing the following Lagrangian functional

[image: image10.wmf](

)

þ

ý

ü

î

í

ì

×

+

×

+

=

å

Î

Î

Î

)

(

))

(

(

))

(

),

(

,

,

,

(

min

min

arg

1

1

1

0

1

0

)

(

*

1

1

*

1

1

1

r

R

i

R

i

i

r

r

P

D

r

SAD

P

i

SAD

B

B

i

SAD

S

R

r

B

B

l

l

m

m

m

m

m

· If the associated cost measure Jiter = J(rB0, r*B1, {mB0}, {m*B1}) is less than the minimum cost measure JBi, the list 1 reference index r*B1 is assigned to rB1 and the associated list 1 motion vectors {m*B1} are assigned to {mB1}.

· If the calculated cost measure Jiter is greater than or equal to the minimum cost measure JBi, the iteration process is stopped.

· Otherwise, JBi is set equal to Jiter.

· If a maximum number of iterations has been carried out, the iteration process is stopped.

· Otherwise, the iteration index iter is incremented by 1: iter = iter + 1.

3.2 Quantization Offset for Key Pictures

In the Joint Model [2], the quantization of transform coefficients is performed according to the equation

[image: image11.wmf](

)

ë

û

q

q

f

t

t

c

i

i

i

/

)

sgn(

×

+

×

=

where ti and ci represent the transform coefficients and the transform coefficient levels, respectively. q is the quantization step size and f specifies a quantization offset. According to the Joint Model [2], the quantization offset f is set equal to 1/3 for intra coefficients and equal to 1/6 for inter coefficients.
This rule was slightly changed for the coding with hierarchical B pictures. When more than 2 hierarchy levels are coded, the quantization offset is set equal to 1/3 when the corresponding macroblock is either an intra macroblock, or when this macroblock belongs to a key picture. With this modification, more details are preserved in the key pictures, and since the key pictures are directly or indirectly used as references for motion-compensated prediction of all other pictures, in general more details are preserved in image regions that can be well represented by motion-compensated prediction. Thus, in many cases the subjective quality can be slightly improved.
We found that this modification does not improve the coding efficiency when less than 2 hierarchy levels are coded, for example with the classical “IBBP…” structure. That’s why the rule for choosing the quantization offset is only modified when the number of hierarchy levels is greater than 2.

3.3 Cascading of Quantization Parameter

Although not explicitly specified in the Joint Model [2], it is generally believed that the quantization parameter for B pictures should be selected to be equal to the quantization parameter of I/P pictures plus 2: QPB = QPP + 2. Our experiments turned out that the coding gain with hierarchical B pictures is limited when this rule is used. For an optimize encoding, the quantization parameters have to be selected based on the hierarchy level. The key pictures have to be coded with the highest fidelity, since they are directly or indirectly used as references for motion-compensated prediction of all other pictures, and thus the quality of the key pictures determines the maximum quality of the prediction signal for all non-key pictures. For the coding of the next hierarchy level (B1 in Figure 1) a larger quantization parameter QP should be chosen, since the quality of these pictures influences less pictures than the key pictures. Following this rule, the quantization parameter should be increased for any further hierarchy level.
The optimal value by which the quantization parameter should be increased from one hierarchy level to the next is sequence dependent. It mainly depends on what quality of the prediction signal can be obtained by motion-compensated prediction. The optimal selection of the quantization parameters should be done based on a computationally expensive rate-distortion analysis similar to the strategy presented in [8].
We have chosen the following strategy, which appeared to be quite robust for the wide range of tested sequences. Based on the given quantization parameter for key pictures QP0, the remaining quantization parameters are determined as follows

[image: image12.wmf]î

í

ì

>

+

==

+

=

-

-

1

:

1

1

:

4

1

1

k

QP

k

QP

QP

k

k

k

.
Although the strategy for cascading the quantization parameters over the hierarchy levels results in relatively large PSNR fluctuations inside a GOP of pictures – PSNR differences of up to 4 dB (depending on the sequence characteristic) can be observed between the key and non-key pictures –, no annoying subjective pumping artifacts occur. The reconstructed video signal looks smooth in motion, and the quality fluctuations are not visible.
In the diagrams of Figure 4 and Figure 5 we compared three different strategies for cascading the quantization parameters at one rate point for the sequences “Foreman” and “Mobile” in CIF resolution. The average luma PSNR is plotted over the GOP size (dyadic GOP’s of 2^N pictures and the “IBBP…” structure with GOP’s of 3 pictures). Beside the proposed QP selection strategy, we also plotted curves for the following strategies inside the diagrams: (a) A constant QP is chosen for all pictures independent of the hierarchy, (b) The quantization parameter for all B pictures (non-key pictures) is set equal to the QP of the key pictures plus 2. As it can be seen in the diagrams, a suitable cascading of the quantization parameters over the hierarchy levels is absolutely necessary for achieving an optimized coding efficiency when several hierarchy levels of B pictures are coded. By just modifying the picture coding structure and the QP selection a PSNR gain of about 1.0 dB could be achieved for the “Foreman” sequence in comparison to the classical “IBBP…” coding; for the “Mobile” sequence a PSNR gain of about 1.8 dB could be achieved. Note, that for all coding runs, the iterative motion estimation for bi-predicted blocks as described in sec. 3.1.2 has been used.

[image: image13.wmf]Foreman CIF 25Hz @ 200 kbit/s

33

34

35

36

37

1

2

3 (IBBP…)

4

8

16

32

GOP size

Y-PSNR [dB]

QP(B) = QP(P)

QP(B) = QP(P) + 2

QP(B1) = QP(P) + 4; QP(Bn) = QP(Bn-1) + 1

ca. 1 dB

Figure 4: Comparison of different quantization strategies for the sequence “Foreman” in CIF resolution with a frame rate of 25 Hz and the hierarchical B picture coding with different GOP sizes.
[image: image14.wmf]Mobile CIF 25Hz @ 500 kbit/s

28

29

30

31

32

33

34

1

2

3 (IBBP…)

4

8

16

32

GOP size

Y-PSNR [dB]

QP(B) = QP(P)

QP(B) = QP(P) + 2

QP(B1) = QP(P) + 4; QP(Bn) = QP(Bn-1) + 1

ca. 1.8 dB

Figure 5: Comparison of different quantization strategies for the sequence “Mobile” in CIF resolution with a frame rate of 25 Hz and the hierarchical B picture coding with different GOP sizes.
4 Simulation Results
We evaluated the coding efficiency for hierarchical B pictures for a large set of test sequences, picture resolutions, frame rates, and GOP sizes. An overview of the tested sequences, image resolutions, and frame rates in given in Table 7. For all test sequences and resolutions, the hierarchical B picture coding with dyadic GOP’s of up to 64 pictures (for 60Hz) is compared with the classical “IPPP…”, “IBPBP…”, and “IBBP…” coding structures.
Table 7: Overview of the tested sequences, picture resolutions, and frame rates. For the grey shaded test points an intra period of 1.07 seconds (64 pictures at 60Hz) has been used.
	
	QCIF
	CIF
	4CIF
	720p

	Barcelona
	
	25 Hz
	
	

	Flowergarden
	
	25 Hz
	
	

	Husky
	
	25 Hz
	
	

	Paris
	
	25 Hz
	
	

	Rainman
	
	25 Hz
	
	

	Rugby
	
	25 Hz
	
	

	Skiing
	
	25 Hz
	
	

	Tempete
	
	25 Hz
	
	

	Bus
	7.5 Hz, 15 Hz
	7.5 Hz, 15 Hz, 30 Hz
	
	

	Football
	7.5 Hz, 15 Hz
	7.5 Hz, 15 Hz, 30 Hz
	
	

	Foreman
	7.5 Hz, 15 Hz
	7.5 Hz, 15 Hz, 30 Hz
	
	

	Mobile
	7.5 Hz, 15 Hz
	7.5 Hz, 15 Hz, 30 Hz
	
	

	Soccer
	7.5 Hz, 15 Hz
	7.5 Hz, 15 Hz, 30 Hz
	15 Hz, 30 Hz, 60 Hz
	

	City
	7.5 Hz, 15 Hz
	7.5 Hz, 15 Hz, 30 Hz
	15 Hz, 30 Hz, 60 Hz
	60 Hz

	Crew
	7.5 Hz, 15 Hz
	7.5 Hz, 15 Hz, 30 Hz
	15 Hz, 30 Hz, 60 Hz
	60 Hz

	Harbour
	7.5 Hz, 15 Hz
	7.5 Hz, 15 Hz, 30 Hz
	15 Hz, 30 Hz, 60 Hz
	60 Hz

	Night
	
	
	
	60 Hz

	Big Ships
	
	
	
	60 Hz

	Sailormen
	
	
	
	60 Hz

	Raven
	
	
	
	60 Hz

	Shuttle Start
	
	
	
	60 Hz

	Jets
	
	
	
	60 Hz

	Optis
	
	
	
	60 Hz

	Sheriff
	
	
	
	60 Hz

	Preakness
	
	
	
	60 Hz

The QCIF sequences have been coded with the Main Profile, while the CIF, 4CIF, and 720p sequences have been coded with the High Profile. CABAC was always used as entropy coding method. The coding with hierarchical B pictures was realized with a strategy similar to method 3 as described in sec. 2.1.3. For all encoder runs, the high-complexity encoder control of the Joint Model [2] has been used with the modifications that have been described in sec. 3. That means especially that the motion vectors of the bi-predictive blocks have been estimated with the iterative joint motion estimation (see sec. 3.1). And the quantization parameters for the non-key pictures have been selected according to the strategy in sec. 3.3, this also includes the encoder runs for the classical “IBPBP…” and “IBBP…” structures. As it could be seen in the examples of Figure 4 and Figure 5, this minor modification already improves the coding efficiency for the “IBPBP…” and “IBBP…” coding structures in comparison to the usual strategy for choosing the B picture quantization parameters. The motion search was always conducted over a search range of (-96…96)x(-96…96) luma samples, and the number of active entries of both of the reference picture lists was always set to 1 picture. In general, only the first picture of a video sequence has been coded as intra picture, and all other pictures have been inter-coded as P or B pictures. However, for the sequences “City”, “Crew”, “Harbour”, and “Soccer” in QCIF, CIF, and 4CIF resolution, an intra picture has been inserted every 1.07 seconds (or every 64 pictures for the 60Hz sequences).
In Figure 6 to Figure 15, the rate-distortion plots for 8 CIF sequences (with frame rates of 25 Hz or 30 Hz) and 2 HD sequences (720p60) are depicted. The simulation results for the other test sequences, resolutions, and frame rates are compiled in the accompanying Excel documents. The rate-distortion plots show that in comparison to the classical “IPPP…”, “IBPBP…”, and “IBBPBBP…” coding, the coding efficiency can be generally improved when a hierarchical B picture coding with GOP sizes between 4 and 64 is employed. The largest coding gains of up to 1.5 dB in comparison to the popular “IBBP…” coding have been achieved for sequences with high spatial detail and slow and/or regular motion (e.g. Mobile and City). For this class of sequences, the coding efficiency could be continuously improved by enlarging the GOP size up to about 1 second. For sequences with faster and/or more complex motion, the maximum coding efficiency was reached with a GOP size of 4 or 8 pictures. As already mentioned, we believe that the coding efficiency can be further improved when the GOP size is adaptively controlled based on the actual sequence characteristics. Nonetheless, it can be seen the choosing a relatively large GOP size of 16 or 32 pictures represents a robust strategy.
The PSNR improvements that could be achieved with a hierarchical B picture coding are also reflected in the subjective quality. Furthermore, the subjective quality is even improved for sequences, for which only minor PSNR gains in comparison to the classical “IBBP…” coding could be measured (e.g. Husky, Rugby). In Figure 16 to Figure 24 several selected reconstructed frames for the “IBBP…” coding and the hierarchical coding with GOP sizes of 16 or 32 pictures are compared. Note that the selected pictures for the hierarchical coding do not represent the high-quality key pictures; the hierarchy level of the pictures is specified in parenthesis just after the frame number. As it can be seen, fine-detailed regions especially of the background are noticeable better preserved with the hierarchical B picture coding than with the classical “IBBP…” coding. This also applies to the reconstructed sequences at the actual frame rate. The reconstructed sequences coded with hierarchical B pictures generally contain more details than the reconstructed sequences for the “IBBP…” structure at a comparable bit-rate, especially in slow and/or regular moving background regions, whereas the PSNR fluctuations between the key and non-key pictures are not visible. This effect could be explained as follows. Since the key pictures are coded with a significant lower QP value than the non-key pictures, fine details are well presented for the corresponding target bit-rate. These details are also contained in the prediction signals for non-key pictures. And since the non-key picture are coded with a higher quantization step size, small prediction errors between the prediction and the original signal are not corrected. As a consequence, the details are also preserved in the non-key pictures; motion errors due to a non-perfect motion compensation generally occur, but these motion errors are not visible. The motion errors, which are generally less than ¼ luma sample, influence the objective quality of the non-key pictures and are a reason for the large PSNR fluctuations, but the subjective quality is largely determined by the quality of the key pictures.
5 Conclusions
We presented an investigation of the H.264/MPEG4-AVC compatible encoding with hierarchical B pictures. We analyzed the memory requirements, showed different strategies how the required memory can be minimized, and described several aspects of the operational encoder control that improve the coding efficiency especially for the coding with hierarchical B pictures. On the basis of a large set of test sequences with different resolutions and frame rates we evaluated the coding efficiency of the hierarchical B picture coding in comparison to the classical “IPPP…”, “IBPBP…”, and “IBBP….” coding structures. The simulation results show that both the objective and the subjective quality can be improved with the hierarchical B picture coding in comparison to the classical coding structures. Especially, fine-detailed regions of slow/regular image regions are noticeably better preserved. A problem that still needs to be resolved is the optimal bit-allocation between the different hierarchy levels, i.e. the optimal cascading of the QP values.
[image: image15.emf]BUS CIF 30Hz

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

0 200 400 600 800 1000 1200 1400 1600 1800 2000

bit-rate [kbit/s]

Y-PSNR [dB]

IPPP

IBPBP

IBBP

GOP04

GOP08

GOP16

GOP32

Figure 6: Comparison of the coding efficiency with hierarchical B pictures for the sequence “Bus”.
[image: image16.emf]CITY CIF 30Hz

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

0 100 200 300 400 500 600 700 800 900 1000

bit-rate [kbit/s]

Y-PSNR [dB]

IPPP

IBPBP

IBBP

GOP04

GOP08

GOP16

GOP32

Figure 7: Comparison of the coding efficiency with hierarchical B pictures for the sequence “City”.
[image: image17.emf]FOOTBALL CIF 30Hz

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

0 500 1000 1500 2000 2500

bit-rate [kbit/s]

Y-PSNR [dB]

IPPP

IBPBP

IBBP

GOP04

GOP08

GOP16

GOP32

Figure 8: Comparison of the coding efficiency with hierarchical B pictures for the sequence “Football”.
[image: image18.emf]FOREMAN CIF 30Hz

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

0 100 200 300 400 500 600 700 800 900 1000

bit-rate [kbit/s]

Y-PSNR [dB]

IPPP

IBPBP

IBBP

GOP04

GOP08

GOP16

GOP32

Figure 9: Comparison of the coding efficiency with hierarchical B pictures for the sequence “Foreman”.
[image: image19.emf]Husky CIF 25Hz

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

0 500 1000 1500 2000 2500 3000 3500 4000

bit-rate [kbit/s]

Y-PSNR [dB]

IPPP

IBPBP

IBBP

GOP04

GOP08

GOP16

GOP32

Figure 10: Comparison of the coding efficiency with hierarchical B pictures for the sequence “Husky”.
[image: image20.emf]MOBILE CIF 30Hz

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

0 500 1000 1500 2000 2500 3000

bit-rate [kbit/s]

Y-PSNR [dB]

IPPP

IBPBP

IBBP

GOP04

GOP08

GOP16

GOP32

Figure 11: Comparison of the coding efficiency with hierarchical B pictures for the sequence “Mobile”.
[image: image21.emf]Rugby CIF 25Hz

24

25

26

27

28

29

30

31

32

33

34

35

36

37

0 500 1000 1500 2000 2500

bit-rate [kbit/s]

Y-PSNR [dB]

IPPP

IBPBP

IBBP

GOP04

GOP08

GOP16

GOP32

Figure 12: Comparison of the coding efficiency with hierarchical B pictures for the sequence “Rugby”.
[image: image22.emf]SOCCER CIF 30Hz

27

28

29

30

31

32

33

34

35

36

37

38

39

40

0 200 400 600 800 1000 1200

bit-rate [kbit/s]

Y-PSNR [dB]

IPPP

IBPBP

IBBP

GOP04

GOP08

GOP16

GOP32

Figure 13: Comparison of the coding efficiency with hierarchical B pictures for the sequence “Soccer”.
[image: image23.emf]BigShips 720p60

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

0 2000 4000 6000 8000 10000 12000 14000 16000

bit-rate [kbit/s]

Y-PSNR [dB]

IPPP

IBPBP

IBBP

GOP04

GOP08

GOP16

GOP32

GOP64

Figure 14: Comparison of the coding efficiency with hierarchical B pictures for the sequence “Big Ships”.
[image: image24.emf]ShuttleStart 720p60

31

32

33

34

35

36

37

38

39

40

41

42

43

44

0 500 1000 1500 2000 2500 3000

bit-rate [kbit/s]

Y-PSNR [dB]

IPPP

IBPBP

IBBP

GOP04

GOP08

GOP16

GOP32

GOP64

Figure 15: Comparison of the coding efficiency with hierarchical B pictures for the sequence “Shuttle Start”.
(a) [image: image25.png]R IO

 (b) [image: image26.png]

Figure 16: Subjective comparison of frame 72 (B5) of the sequence “Bus” in CIF resolution with a frame rate of 30Hz: (a) “IBBP…” coding at 348 kbit/s, (b) dyadic hierarchical coding with a GOP size of 32 at 350 kbit/s.
(a) [image: image27.png]

 (b) [image: image28.png]

Figure 17: Subjective comparison of frame 152 (B4) of the sequence “City” in CIF resolution with a frame rate of 30Hz: (a) “IBBP…” coding at 177 kbit/s, (b) dyadic hierarchical coding with a GOP size of 16 at 175 kbit/s.
(a) [image: image29.png]

 (b) [image: image30.png]

Figure 18: Subjective comparison of frame 206 (B4) of the sequence “Football” in CIF resolution with a frame rate of 30Hz: (a) “IBBP…” coding at 475 kbit/s, (b) dyadic hierarchical coding with a GOP size of 16 at 479 kbit/s.
(a) [image: image31.png]

 (b) [image: image32.png]

Figure 19: Subjective comparison of frame 263 (B3) of the sequence “Foreman” in CIF resolution with a frame rate of 30Hz: (a) “IBBP…” coding at 192 kbit/s, (b) dyadic hierarchical coding with a GOP size of 16 at 195 kbit/s.
(a) [image: image33.png]

 (b) [image: image34.png]

Figure 20: Subjective comparison of frame 39 (B3) of the sequence “Husky” in CIF resolution with a frame rate of 25Hz: (a) “IBBP…” coding at 897 kbit/s, (b) dyadic hierarchical coding with a GOP size of 16 at 871 kbit/s.
(a) [image: image35.png]

 (b) [image: image36.png]

Figure 21: Subjective comparison of frame 233 (B1) of the sequence “Husky” in CIF resolution with a frame rate of 25Hz: (a) “IBBP…” coding at 897 kbit/s, (b) dyadic hierarchical coding with a GOP size of 16 at 871 kbit/s.
(a) [image: image37.png]

 (b) [image: image38.png]

Figure 22: Subjective comparison of frame 236 (B4) of the sequence “Mobile” in CIF resolution with a frame rate of 30Hz: (a) “IBBP…” coding at 228 kbit/s, (b) dyadic hierarchical coding with a GOP size of 16 at 228 kbit/s.
(a) [image: image39.png]

 (b) [image: image40.png]

Figure 23: Subjective comparison of frame 137 (B1) of the sequence “Rugby” in CIF resolution with a frame rate of 25Hz: (a) “IBBP…” coding at 714 kbit/s, (b) dyadic hierarchical coding with a GOP size of 16 at 699 kbit/s.
(a) [image: image41.png]

 (b) [image: image42.png]

Figure 24: Subjective comparison of frame 37 (B2) of the sequence “Soccer” in CIF resolution with a frame rate of 30Hz: (a) “IBBP…” coding at 397 kbit/s, (b) dyadic hierarchical coding with a GOP size of 16 at 393 kbit/s.
References

[1] H. Schwarz, D. Marpe, and T. Wiegand, “Subband Extension of H.264/AVC,” Joint Video Team, Doc. JVT-K023, Munich, Germany, March 2004.
[2] K.-P. Lim, G. J. Sullivan, and T. Wiegand, “Text Description of Joint Model Reference Encoding Methods and Decoding Concealment Methods,” Joint Video Team, Doc. JVT-L046, Redmond, WA, USA, July 2004.
[3] G. H. Park, M. W. Park, S. Jeong, K. K. Kim, and J. Hong, “Improve SVC Coding Efficiency by Adaptive GOP Structure,” Joint Video Team, Doc. JVT-O018, Busan, Korea, April 2005.

[4] J. Reichel, H. Schwarz, and M. Wien, “Joint Scalable Video Model JSVM 1,” Joint Video Team, Doc. JVT-N023, Hong Kong, China, January 2005.

[5] Joint Video Team, “JSVM 1 software,” Joint Video Team, Doc. JVT-N023, Hong Kong, China, January 2005.
[6] M. Flierl, T. Wiegand, and B. Girod, “A Locally Optimal Design Algorithm for Block-Based Multi-Hypothesis Motion-Compensated Prediction,” Proceedings of the Data Compression Conference, Snowbird, USA, April 1998.

[7] A. M. Tourapis, K. Sühring, and G. J. Sullivan, “H.264/MPEG4-AVC Reference Software Enhancements,” Joint Video Team, Doc. JVT-N008, Hong Kong, China, Jan. 2005.

[8] K. Ramchandran, A. Ortega, and M. Vetterli, “Bit Allocation for Dependent Quantization with Applications to Multiresolution and MPEG Video Coders,” IEEE Transactions on Image Processing, vol. 3, pp. 533-545, Sep. 1994.

File: HierB_final.doc
Page: 1
Date Saved: 2005-07-06

_1181330410.unknown

_1181330629.unknown

_1181378019.unknown

_1181382424.unknown

_1181373979.unknown

_1181330570.unknown

_1139131588.unknown

_1181329917.unknown

_1139082648.unknown

_1139083521.unknown

_1139082544.unknown

