

# Enhanced Low Latency Video Codec

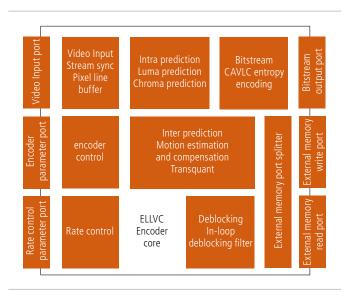
An H.264/AVC Video Codec IP with outstanding low latency



The Fraunhofer Heinrich Hertz Institute HHI offers a range of H.264/AVC compliant codecs (IPs) for use in industrial applications. Specially tailored to real-time applications, the IPs allow coding of up to 1080p resolution on current FPGA technologies. The codecs are fully hardwired implementations with low power consumption and minimal resource usage.

The codec is available as VHDL description synthesizable for FPGA and ASIC Technolgies. Existing testbenches and C reference models allow the hardware designer to simulate the ELLVC IP core using state of the art simulation environments.

#### Challenges


Many applications for live video encoding require low latency like Advanced Driver Assistance Systems or visual medical surgery equipment which is highly dependent on video data real-time processing. The Enhanced Low Latency Video Codec (ELLVC) allows coding of intra and inter-frames to combine low latency demands with efficient video compression features.

#### Technical Background

To avoid the typical bitrate peaks often arising in Intra/Inter coding, a special "Intra refresh" mode has been implemented. The ELLVC IP has low requirements for on-chip and off-chip memories. The type of external memory does not matter as long as the read and write accesses are fast enough to satisfy the real-time requirements of the codec. The external memory interface of the IP is very flexible and can be connected to memory controllers already available on the market.

Because processing of one macroblock needs only around 600 clock cycles to complete, the IP has very low clock demands.

The ELLVC IP is ready to be integrated into larger systems through flexible interfaces that can be adapted to specific needs, if necessary.



ELLVC IP block diagram



| Videoformat         | Sample rate<br>(MHz) | Lines      | Active<br>lines | Samples<br>per line | Active samples per line | width_in_mbs | height_in_mbs   | F <sub>min</sub> (MHz) |
|---------------------|----------------------|------------|-----------------|---------------------|-------------------------|--------------|-----------------|------------------------|
| 576i50 <sup>2</sup> | 27 <sup>2</sup>      | 625        | 576             | 864                 | 720                     | 45           | 36              | 24.7                   |
| 480i60 <sup>1</sup> | 27 <sup>2</sup>      | 525        | 480             | 858                 | 720                     | 45           | 30              | 24.7                   |
| 720p50<br>720p60    | 74.25<br>74.25       | 750<br>750 | 720<br>720      | 1980<br>1650        | 1280<br>1280            | 80<br>80     | 45<br>45        | 109.8<br>131.8         |
| 1080p25             | 74.25                | 1125       | 1080            | 2640                | 1920                    | 120          | 68 <sup>3</sup> | 124.4                  |
| 1080p30             | 74.25                | 1125       | 1080            | 2200                | 1920                    | 120          | 68 <sup>3</sup> | 149.3                  |

Overview of common HD/SD resolutions and needed clock cycles

### **Benefits**

- H.264/AVC baseline profile compliant
- Intra refresh feature to avoid bitrate peaks
- Inter prediction supports all macroblock partition sizes
- Low latency below 2 frames
- SD and full HD resolutions up to 1080p with 30fps supported
- Low clock demands for real-time coding

Low resource demands (Numbers for Xilinx Virtex-6 FPGA LX240T)

Slices: 34.000

Slice registers: 90.000Slice LUTs: 98.000Block Ram: 212DSP48E1s: 65

#### **Future Objectives**

Fraunhofer HHI offers both encoder and decoder solutions. The encoder solution is already available. The decoder solution is expected to be released in Q2/2012.

## CONTACT

Dr. Benno Stabernack Image Processing phone +49 30 31002-661 email esg@hhi.fraunhofer.de

Fraunhofer Heinrich Hertz Institute Einsteinufer 37 | 10587 Berlin | Germany www.hhi.fraunhofer.de/ip