Enhanced Sensors

Ultrashort laser pulses (< 100 fs) are very well suited for tailored processing of optical transparent materials on a micrometer scale. Due to the very short time of interaction no thermal processes arise and a structural change of materials is restricted to the laser focus volume. By adjusting carefully the laser parameters in glasses an increased refractive index change can be induced by femtosecond pulses. Based on this scientists from Fraunhofer HHI developed a technique for direct writing of optical waveguide structures in nearly all glass materials and some crystalline materials and polymers.

The advantage of this technique is the ability of an easy adaption of the diameter of the waveguides, tailored for the mode field and wavelength of the guided light for a broad wavelength range from the visible to NIR.
All optical structures are not visible by eyes. 3D-Optical elements like splitter or coupler waveguide elements, spectral filters or mirrors can be introduced in nearly all glass materials, enabling miniaturized applications in measurement engineering.

Additionally Bragg grating structures can be introduced inside the waveguides. This Bragg grating waveguides (BGW) can be used as high reflection mirrors or spectral filter elements for wavelengths from visible to NIR in optical circuits.

Fraunhofer HHI successfully introduced BGW in ultra thin glasses from Schott. This opens new applications for sensing of local deformation of surfaces (displays) or can be used as optical microphones. Ultra thin glasses often are used as packaging materials for MEMS. Now, with the technique from Fraunhofer HHI this can be combined for integration of optical elements enabling new architectures in design of photonics and MEMS.

Glass chips with BGW structures are also suited very well for sensitive chemical analytics or for monitoring industrial chemical production processes. For this the waveguides with the Bragg grating structures are guided close to the surface of the glass substrate. Due to evanescent interactions with the chemical medium, surrounding the glass chip, a shift of the reflection wavelength is introduced. The sensitivity for specific chemical targets can be increased by deposition of associated receptors.

Research Topics

The focus is on integration of new optical functions for transparent substrates by a direct femtosecond laser writing technology.

Read more


Explore the current and finished projects of the Enhanced Sensors. Realized for public and industrial clients.

Read more