Neural Face Models for Example-Based Visual Speech Synthesis
In this paper we present an example-based approach for visual speech synthesis. We combine the advantages of deep generative models and classical animation approaches to create a real-time capable facial animation framework based on volumetric captures.
Second Harmonic Generation in Polymer Photonic Integrated Circuits
Second harmonic generation is an efficient way to create coherent radiation at wavelengths that are not accessible with standard laser sources. In this work we demonstrate second harmonic generation from 1550 nm to 775 nm in a polymer photonic integrated circuit via the hybrid integration of a periodically poled lithium niobate crystal. The bulk crystal is inserted in an on-chip free-space section between two waveguide couple! d GRIN lenses. Fiber to fiber conversion efficiencies were 0.03 %/W for a continuous wave laser source and 100 %/W for a femtosecond laser source. Furthermore, third and fourth harmonic light at 517 nm and 388 nm was observed.
Demonstration of Federated Learning over Edge-Computing Enabled Metro Optical Networks
We demonstrate the benefits of a federated learning framework for (re)training of global ML models over geo-distributed data sources. The demonstration is carried out on a live edge computing enabled optical networking test-bed. In this demonstration, we perform real-time training of a QoT classifier by exploiting data of three different Domain Managers (DM), representing a multi-vendor ecosystem, without sharing any data with the Network Management System (NMS) in order to avoid transporting any data t! o a central location and to protect the privacy of different vendors while offering their knowledge to train a global ML model.
Predictive Resource Allocation for Automotive Applications using Interference Calculus
In autonomous driving, safety-related connected applications will coexist with infotainment services. We propose a multi-cell anticipatory networking framework with interference coordination based on Interference Calculus to serve diverse QoS requirements. The iterative approach optimizes packet transmission times leveraging service properties and channel distribution information.
Experimental Demonstrations of High-Capacity THz-Wireless Transmission Systems for Beyond 5G
Using the concept of a “THz-Wireless Fiber Extender” it is possible to combine the flexibility of wireless networks with the high capacity of fiber-optical networks. In this article, we report on a real-time short-range demonstration of a 100 Gb/s fiber extender and discuss the potential of long-range data transmission at 300 GHz using a 500-meter-long wireless link in Berlin, Germany.
Dual-Band Node Architectures for C+L-Band Capacity Upgrades in Optical Metro Transport Networks
To address the capacity crunch in optical metropolitan networks caused by the roll out of innovations in the context of 5G and beyond innovative approaches are required to increase the achievable throughput. Multi band systems are an interesting solution to address this issue. In this contribution, we investigate the capacity limits of such networks.
Security Gap Investigation of Multilevel Coding in Coherent Fiber-Optical Systems
Using a coherent laboratory setup with up to 768 Gb/s data rate (64-GBd DP-64QAM), we experimentally show that multilevel coding (MLC) provides superior physical layer security (i.e. smaller security gaps) as compared to conventional bit-interleaved coded modulation (BICM) . MLC offers a flexible trade-off between security and net secure data rate.
The socio-economic determinants of the coronavirus disease (COVID-19) pandemic
Besides the biological and epidemiological factors, a multitude of social and economic criteria also govern the extent of the coronavirus disease spread within a population. Consequently, there is an active debate regarding the critical socio-economic determinants that contribute to the impact of the resulting pandemic. Here, we leverage Bayesian model averaging techniques and country level data to investigate the potential of 31 determinants, describing a diverse set of socio-economic characteristics, in explaining the outcome of the first wave of the coronavirus pandemic. We show that the true empirical model behind the coronavirus outcome is constituted only of few determinants. To understand the relationship between the potential determinants in the specification of the true model, we develop the coronavirus determinants Jointness space. The extent to which each determinant is able to provide a credible explanation varies between countries due to their heterogeneous socio-economic characteristics. In this aspect, the obtained Jointness map acts as a bridge between theoretical investigations and empirical observations and offers an alternate view for the joint importance of the socio-economic determinants when used for developing policies aimed at preventing future epidemic crises.
40 GHz High-Power Photodetector Module
We demonstrate a fully packaged photodetector module based on surface-illuminated modified uni-traveling-carrier (MUTC) photodiode (PD) and investigate its DC and RF characteristics. It has a very a low dark current below 2 nA at the operational reverse bias of 4 V and a responsivity of 0.49 A/W at 1550 nm. The module shows a high f3dB bandwidth of 38 GHz for low optical input powers and excellent linearity with RF output power levels of 11.7 dBm at 40 GHz. The power conversion efficiency ? PCE was 6.7% at 40 GHz making it suitable for RF signal generation.
Hybrid data and model driven algorithms for angular power spectrum estimation
We propose two algorithms that use both models and datasets to estimate angular power spectra from channel covariance matrices in massive MIMO systems. The first algorithm is an iterative fixed-point method that solves a hierarchical problem. It uses model knowledge to narrow down candidate angular power spectra to a set that is consistent with a measured covariance matrix. Then, from this set, the algorithm selects the angular power spectrum with minimum distance to its expected value with respect to a Hilbertian metric learned from data. The second algorithm solves an alternative optimization problem with a single application of a solver for nonnegative least squares programs. By fusing information obtained from datasets and models, both algorithms can outperform existing approaches based on models, and they are also robust against environmental changes and small datasets.