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Content 

• Background: Projective geometry (2D, 3D), 
Parameter estimation, Algorithm evaluation. 

• Single View: Camera model, Calibration, Single 
View Geometry. 

• Two Views: Epipolar Geometry, 3D 
reconstruction, Computing F, Computing 
structure, Plane and homographies. 

• Three Views: Trifocal Tensor, Computing T. 
• More Views: N-Linearities, Multiple view 

reconstruction, Bundle adjustment, auto-
calibration, Dynamic SfM, Cheirality, Duality 



Multiple View Geometry course schedule 
(tentative) 

Jan.  7, 9 Intro & motivation Projective 2D Geometry 

Jan. 14, 16  (no course) Projective 2D Geometry 

Jan. 21, 23 Projective 3D Geometry Parameter Estimation 

Jan. 28, 30 Parameter Estimation Algorithm Evaluation 

Feb.  4, 6 Camera Models Camera Calibration 

Feb. 11, 13 Single View Geometry Epipolar Geometry 

Feb. 18, 20 3D reconstruction Fund. Matrix Comp. 

Feb. 25, 27 Structure Comp. Planes & Homographies 

Mar.  4, 6 Trifocal Tensor Three View Reconstruction 

Mar. 18, 20 Multiple View Geometry MultipleView Reconstruction 

Mar. 25, 27 Bundle adjustment Papers 

Apr.  1, 3 Auto-Calibration Papers 

Apr.  8, 10 Dynamic SfM   Papers 

Apr. 15, 17 Cheirality Papers 

Apr. 22, 24 Duality Project Demos 



• Points, lines & conics 
• Transformations & invariants 

 
 
 

• 1D projective geometry and  
 the Cross-ratio 

Projective 2D Geometry 



Homogeneous coordinates 

0=++ cbyax ( )Ta,b,c
0,0)()( ≠∀=++ kkcykbxka ( ) ( )TT a,b,cka,b,c ~

Homogeneous representation of lines 

equivalence class of vectors, any vector is representative 
Set of all equivalence classes in R3−(0,0,0)T forms P2 

Homogeneous representation of points 
0=++ cbyax( )Ta,b,c=l( )Tyx,x = on if and only if 

( )( ) ( ) 0l 11 == x,y,a,b,cx,y, T ( ) ( ) 0,1,,~1,, ≠∀kyxkyx TT

The point x lies on the line l if and only if xTl=lTx=0 

Homogeneous coordinates 
Inhomogeneous coordinates ( )Tyx,

( )T321 ,, xxx but only 2DOF 



Points from lines and vice-versa 

l'lx ×=

Intersections of lines  

The intersection of two lines   and    is  l l'

Line joining two points 
The line through two points    and     is  x'xl ×=x x'

Example 

1=x

1=y



Ideal points and the line at infinity 

( )T0,,l'l ab −=×

Intersections of parallel lines  

( ) ( )TT and ',,l'  ,,l cbacba ==

Example 

1=x 2=x

Ideal points ( )T0,, 21 xx
Line at infinity ( )T1,0,0l =∞

∞∪= l22 RP

tangent vector 
normal direction 

( )ab −,
( )ba,

Note that in P2 there is no distinction  
between ideal points and others 



A model for the projective plane 

exactly one line through two points 
exaclty one point at intersection of two lines 



Duality 

x l
0xl =T0lx =T

l'lx ×= x'xl ×=

Duality principle: 
To any theorem of 2-dimensional projective geometry 
there corresponds a dual theorem, which may be 
derived by interchanging the role of points and lines in 
the original theorem 



Conics 

Curve described by 2nd-degree equation in the plane 
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Five points define a conic 

For each point the conic passes through 

022 =+++++ feydxcyybxax iiiiii

or 
( ) 0,,,,, 22 =cfyxyyxx iiiiii ( )Tfedcba ,,,,,=c
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stacking constraints yields 



Tangent lines to conics 

The line l tangent to C at point x on C is given by l=Cx 

l 
x 

C 



Dual conics 

0ll * =CTA line tangent to the conic C satisfies  

Dual conics = line conics = conic envelopes 

1* −= CCIn general (C full rank): 



Degenerate conics 

A conic is degenerate if matrix C is not of full rank 

TT mllm +=C

e.g. two lines (rank 2) 

e.g. repeated line (rank 1) 

Tll=C

l

l

m

Degenerate line conics: 2 points (rank 2), double point (rank1) 

( ) CC ≠
**Note that for degenerate conics  



Projective transformations 

A projectivity is an invertible mapping h from P2 to itself 
such that three points x1,x2,x3 lie on the same line if and 
only if h(x1),h(x2),h(x3) do. 

Definition: 

A mapping h:P2→P2 is a projectivity if and only if there 
exist a non-singular 3x3 matrix H such that for any point 
in P2 reprented by a vector x it is true that h(x)=Hx 

Theorem: 

Definition: Projective transformation 
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8DOF 
projectivity=collineation=projective transformation=homography 



Mapping between planes 

central projection may be expressed by x’=Hx 
(application of theorem) 



Removing projective distortion 
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( ) 131211333231' hyhxhhyhxhx ++=++
( ) 232221333231' hyhxhhyhxhy ++=++

select four points in a plane with know coordinates 

(linear in hij) 

(2 constraints/point, 8DOF ⇒ 4 points needed) 

Remark: no calibration at all necessary,  
 better ways to compute (see later) 



More examples  



Transformation of lines and conics 

Transformation for lines 

ll' -TH=

Transformation for conics 
-1-TCHHC ='

Transformation for dual conics 
THHCC **' =

xx' H=
For a point transformation 



A hierarchy of transformations 

Projective linear group 
   Affine group (last row (0,0,1)) 
      Euclidean group (upper left 2x2 orthogonal) 
          Oriented Euclidean group (upper left 2x2 det 1) 
 
Alternative, characterize transformation in terms of elements 

or quantities that are preserved or invariant 
 
 e.g. Euclidean transformations leave distances unchanged 



Class I: Isometries 
(iso=same, metric=measure) 
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special cases: pure rotation, pure translation 
3DOF (1 rotation, 2 translation)  

Invariants: length, angle, area 



Class II: Similarities 
(isometry + scale) 































 −
=

















1100
cossin
sincos

1
'
'

y
x

tss
tss

y
x

y

x

θθ
θθ

x
0

xx' 







==

1
t

T

R
H

s
S IRR =T

also know as equi-form (shape preserving) 
metric structure = structure up to similarity (in literature) 

4DOF (1 scale, 1 rotation, 2 translation)  

Invariants: ratios of length, angle, ratios of areas, 
      parallel lines 



Class III: Affine transformations 
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non-isotropic scaling! (2DOF: scale ratio and orientation) 
6DOF (2 scale, 2 rotation, 2 translation)  

Invariants: parallel lines, ratios of parallel lengths, 
                   ratios of areas 
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Class VI: Projective transformations 

x
v

xx' 







==

vP T

tA
H

Action non-homogeneous over the plane 
8DOF (2 scale, 2 rotation, 2 translation, 2 line at infinity)  

Invariants: cross-ratio of four points on a line 
                   (ratio of ratio) 

( )T21,v vv=



Action of affinities and projectivities 
on line at infinity 
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Line at infinity becomes finite,  
allows to observe vanishing points, horizon, 

Line at infinity stays at infinity,  
but points move along line 



Decomposition of projective 
transformations 









=
























==

vv
s

PAS TTTT v
t

v
0

10
0

10
t AIKR

HHHH

Ttv+= RKA s

K 1det =Kupper-triangular, 
decomposition unique (if chosen s>0) 
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Example: 



Overview transformations 
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Projective 
8dof 

Affine 
6dof 

Similarity 
4dof 

Euclidean 
3dof 

Concurrency, collinearity, 
order of contact (intersection, 
tangency, inflection, etc.), 
cross ratio 

Parallellism, ratio of areas, 
ratio of lengths on parallel 
lines (e.g midpoints), linear 
combinations of vectors 
(centroids).  
The line at infinity l∞ 

Ratios of lengths, angles. 
The circular points I,J 
 

lengths, areas. 
 



Number of invariants? 

 The number of functional invariants is equal to, or greater than, 
the number of degrees of freedom of the configuration less the 
number of degrees of freedom of the transformation 

 
 e.g. configuration of 4 points in general position has 8 dof (2/pt) 
  and so 4 similarity, 2 affinity and zero projective invariants 
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