MICRO-OPTICAL BENCH

 μBench with integrated ppKTP crystal for quantum technology

AT A GLANCE

HHIs µBench based on the hybrid integration platform PolyBoard enables the integration of micro-optical elements and functions on photonics integrated circuits (PICs)

Features

Photonic integration platform featuring:

- U grooves:
 F/C coupling, GRIN Lenses, free space sections for crystals
 - Slots: Thin film elements as $\lambda/2$ plate, $\lambda/4$ plate, polarization beam splitter
- 45° mirrors:
 PD / VCSEL coupling

(PBS), filters

Applications

- Telecom / datacom
- Quantum technology
- Micowave photonics
- Sensing and analytics
- Medical and life science

Micro-Optical Bench (µBench)

Micro-mechanical structures such as U grooves, slots and vertical mirrors allows for the integration of passive, active and non-reciprocal optical elements.

Passive elements to be integrated in μ Bench: SM fibers, GRIN lenses, NLO crystals, $\lambda/2$ and $\lambda/4$ plates, PBS/PBC, thin film filters.

Active elements to be integrated in µBench: lasers, detectors, modulators.

Non-reciprocal elements to be integrated in μ Bench: isolators, circulators.

References

International R&D projects

PHOENICS POETICS POLYNICES QSNP Qu-Test / Qu-Pilot SPRINTER TERA 6G TERAMEASURE TERAWAY (funded by EU commission)

National R&D projects

PolyChrome Berlin PoLiSiQ QuNET Silhouette VOMBAT (funded by BMBF)

Features

U grooves

- F/C coupling (passive)
- GRIN lenses
- Free space sections

Applications

Slots

- PBS/PBC
- $\lambda/2$ & $\lambda/4$ plates
- Filter

45 mirror

- Vertical input/output
- PD coupling
- VCSEL coupling

Telecom/Datcom: FFTH tranceiver based on HHI's optical µBench (BMBF PolyPhotonics Berlin)

Sensing: Multipixel sensor array for high-resolution and highly sensitive magnetic field measurements.

Crispin Zawadzki Photonic Components

Phone +49 30 31002-624 crispin.zawadzki@hhi.fraunhofer.de

Fraunhofer Heinrich Hertz Institute Einsteinufer 37, 10587 Berlin Germany

www.hhi.fraunhofer.de/pc