
A Study on Data-Driven Probability Estimator Design for
Video Coding

Heiner Kirchhoffer∗, Christian Rudat∗, Michael Schäfer∗, Jonathan Pfaff∗,
Heiko Schwarz∗†, Detlev Marpe∗ and Thomas Wiegand∗‡

∗Fraunhofer Heinrich Hertz Institute, Berlin, Germany
†Institute for Computer Science, Free University of Berlin, Berlin, Germany
‡Chair of Media Technology, Technical University of Berlin, Berlin, Germany

Abstract

Multi-hypothesis probability estimation heavily influences the coding efficiency of the Ver-
satile Video Coding (VVC) standard. In this paper, data-driven optimization techniques
are used to push the limits of the VVC probability estimator. This includes an increase of
the number of hypotheses, a generalization based on a weighted sum of previously observed
binary symbols, as well as a combination with a neural network. Experimental results show
coding efficiency gains for all of the investigated architectures.

1 Introduction

The state-of-the-art video compression standard VVC [1] features a sophisticated
entropy coding stage known as Context-based Adaptive Binary Arithmetic Coding
(CABAC) [2]. Here, the process of encoding (or decoding) syntax elements like trans-
form coefficients, motion vectors, etc. can be structured into four separate stages: bi-
narization, context model selection, probability estimation, and arithmetic encoding
(or decoding). The binarization stage converts the respective syntax elements into a
sequence of binary symbols (so-called bins). The context modeling stage associates
each bin with one of a number of predefined context models. In the probability es-
timation stage, each context model assigns a probability estimate p of the bin being
equal to 1 to each associated bin. The arithmetic coder encodes (or decodes) each
bin with approximately − log2(p) bits on average in the case the bin is equal to 1, or
with approximately − log2(1− p) bits on average in the case the bin is equal to 0.

The aim of this paper is to study the individual components of the probability
estimation scheme of VVC in a data-driven way in order to explore the limits of the
achievable compression efficiency. These studies were conducted using an extension
of the VVC reference software (i.e. the Enhanced Compression Model version 3.1 [3])
which includes additional coding tools.

The remainder of the paper is structured as follows. An overview of the probability
estimation in VVC is given in Section 2. Based on this, several data-driven approaches
for probability estimation are developed in Section 3. Furthermore, Section 4 gives
an overview of the model training and evaluation setup and experimental results are
discussed. The paper concludes in Section 5.



2 Review of probability estimation in VVC

Context models in VVC carry out probability estimation for the associated bins in a
backward-adaptive manner. An in-depth discussion can be found in [2]. Let x(t) with
t ∈ {1, . . . ,M} be the sequence of M bins that are associated with one context model.
The VVC standard specifies for each context model two state variables pStateIdx0
and pStateIdx1 which will be denoted S1(t) and S2(t), respectively, in this paper, with
t ∈ {1, . . . ,M}. When a context model is initialized, for example, when the encoding
or decoding of a picture begins, S1(1) and S2(1) are set to initial values. For encoding
of a bin x(t), a probability estimate p̄(t) of the bin being equal to 1 is calculated from
the state variables according to p̄(t) = (p1(t) + p2(t))/2 where pi(t) = Si(t)/2

bi with
bi being the number of bits to represent Si(t) as unsigned integer. The probability
estimate p̄(t) is used for binary arithmetic encoding (or decoding). Note that S1(t)
and S2(t) are represented as 10 and 14 bit unsigned integers, respectively, i.e., b1 = 10
and b2 = 14. Whenever a bin is encoded (or decoded), the state variables are updated
according to

Si(t+ 1) = Si(t)−
⌊
Si(t)

2ri

⌋
+

⌊
ki · x(t)

2ri

⌋
, (1)

where ki = 2bi−1 and where ri is an adaptation rate parameter. Note that the division
by 2ri and the floor operation are efficiently implemented as a bit-shift operation in
VVC. The choice of bi controls the trade-off between modeling accuracy and memory
consumption. The rounding error in (1) caused by the floor operators becomes less
relevant when bi is increased. According to (1), the probability estimate of a context
model is updated based on the previously encoded bin in a backward-adaptive manner
and the adaptation rate ri controls the degree of change that one update step causes.
For example, large values of ri only slightly change Si during one update while small
values of ri change Si by a more significant amount. The adaptation rates are constant
values that only depend on the context model and they fulfill the conditions 2 ≤ ri ≤ 9
(for i ∈ {1, 2}) and r2 ≥ r1 + 3. It may, however, be beneficial for the compression
efficiency to relax these conditions and allow larger or smaller values for ri.

3 Data-driven probability estimator design

In the sequel, generalizations of the aformentioned probability estimation scheme
of VVC are studied. The parameters of the considered estimators are derived in a
data-driven way.

3.1 Data-driven hypotheses weighting

As discussed in Section 2, each context model uses a weighted sum of two hypotheses
S1 and S2 for probability estimation which differ in the associated adaptation rates
r1 and r2. The idea of data-driven hypotheses weighting (DHW) is to generalize this
approach by using more than two hypotheses. For this purpose, bi shall be assumed
to be sufficiently large so that the rounding caused by the floor operation in (1)



can be neglected. Furthermore, Si(t) shall be substituted by pi(t) · 2bi and ki/2
bi is

approximated by 1 in (1) which yields

pi(t+ 1) = pi(t)−
pi(t)

2ri
+
x(t)

2ri
. (2)

with pi(1) being a predefined initial probability estimate. Next, a so-called inertia
parameter is defined as αi = 1− 2−ri . Substituting ri with αi in (2) then yields

pi(t+ 1) = αi · pi(t) + (1− αi) · x(t), (3)

which can also be written in a non-recursive way as

pi(t+ 1) = αti · pi(1) + (1− αi) ·
t−1∑
j=0

x(t− j) · αji . (4)

Let ui(t) be a probability estimate according to (4) for which pi(1) is assumed to be
equal to 0, i.e.,

ui(t+ 1) = (1− αi) ·
t−1∑
j=0

x(t− j) · αji . (5)

Correspondingly, let vi(t) be a probability estimate according to (4) for which pi(1)
is assumed to equal 1, i.e.,

vi(t+ 1) = αti + ui(t+ 1). (6)

Then, the probability estimate satisfies

pi(t) = pi(1) · vi(t) + (1− pi(1)) · ui(t). (7)

In other words, pi(t) can be expressed as a weighted sum of probability estimates
vi(t) and ui(t) where the weighting factors are pi(1) and 1− pi(1), respectively.

Next, a probability estimator that consists of B weighted hypotheses according
to (4) with different inertia parameters αi and different initial probabilities pi(1) shall
be defined as

p̂(t) =
B∑
j=1

wj · pj(t), (8)

with wj ≥ 0 for all j ∈ {1, . . . , B} and
∑B

j=1wi = 1. Substituting (7) in (8) yields

p̂(t) =
B∑
j=1

wj · (pj(1) · vj(t) + (1− pj(1)) · uj(t)). (9)

Note that each hypothesis j may have an individual value for the initial probability
pj(1). However, it seems to be reasonable to initialize each hypothesis with the same



initial value, ∀j, pj(1) = p(1). Based on (9), a probabity estimate that only uses one
p(1) can be defined as

p̂′(t) = p(1) ·
B∑
j=1

wj · vj(t) + (1− p(1)) ·
B∑
j=1

wj · uj(t). (10)

Let

p̂′′(t) = p(1) ·
B∑
j=1

γj · vj(t) + (1− p(1)) ·
B∑
j=1

δj · uj(t). (11)

Note that (11) is identical to (10) if γj = δj = wi. Equation (11) is used as basis
for the DHW architecture with p(1), γj, and δj being the parameters that shall be
trained. Note that

B∑
j=1

γj = 1,
B∑
j=1

δj = 1, and 0 ≤ p(1) ≤ 1 (12)

must be satisfied when training the parameters. The softmax function can be used
to achieve this for γj and δj while the sigmoid function is suitable to achieve this for
p(1) as explained in the following. Let

γj = eγ
′
j/

B∑
k=1

eγ
′
k , δj = eδ

′
j/

B∑
k=1

eδ
′
k , and p(1) =

1

1 + e−µ
. (13)

Note that no such restrictions as defined in (12) apply to parameters γ′j, δ
′
j, and µ

which makes them suitable to be used as trainable parameters of the architecture.
Consequently, the DHW architecture contains 2B + 1 trainable parameters. In this
paper, an exemplary configuration with B set to 14 and with ri = i for i ∈ {1, . . . , B}
will be used for all experiments.

3.2 Data-driven weighting of latest bins

As can be seen from (4), for each hypothesis, the probability estimate pi(t + 1) is a
weighted sum of the initial probability estimate pi(1) and all observed bins x(j) for
all j ∈ {1, . . . , t}. The idea of data-driven weighting of latest bins (DWLB) is to
directly train these weights instead of calculating them from the inertia parameter
αi. To motivate this idea further, (4) is substituted in (8) which yields

p̂(t+ 1) =
B∑
i=1

wi · αti · pi(1) +
t−1∑
j=0

x(t− j) ·
B∑
i=1

wi · (1− αi) · αji . (14)

Equation (14) shows that p̂(t+1) is a weighted sum of the initial probability estimates
pi(1) and and all observed bins x(j) for all j ∈ {1, . . . , t}. Consequently, only one
set of weights for all previously observed bins plus one initial probability value is
sufficient to implement an arbitrary large number of weighted hypotheses according
to (8). Therefore, DWLB can be considered as a generalization of DHW.



It is, however, challenging to train weights for a previous bins as their number is
not constant. Hence, an approximation which uses a fixed number of previous bins
only shall be derived as follows. Let

x̃(t) =

{
x(t) if t > 0,

p(1) otherwise .
(15)

Note that for α 6= 1,

αt = (1− α) ·
∞∑
j=t

αj (16)

holds. Substituting (15) and (16) in (4) and neglecting index i yields

p(t+ 1) = (1− α) ·
∞∑
j=0

x̃(t− j) · αj =
∞∑
j=0

x̃(t− j) · φj (17)

where φj = (1−α) ·αj. This equation can be interpreted as follows. The probability
estimate is a weighted sum of all previously observed bins and infinitely many further
bins which are all equal to p(1). Note that (17) defines infinitely many parameters φj
which is difficult to implement in practice. As a workaround, the infinite sum in (17)
is replaced with a finite sum of sufficiently many elements. Note that the weights φj
are exponentially decaying with increasing index j. In particular, ‘former’ bins have
a smaller weight than ‘more recent’ bins. Therefore, it is reasonable to only consider
a fixed number of D latest bins x̃(t− j) for all 0 ≤ j < D and still get a sufficiently
accurate probability estimate. Let

p̃(t+ 1) = p(1) · θ +
D−1∑
j=0

x̃(t− j) · φj, with θ =
∞∑
j=D

φj. (18)

In (18), only up to D previous bins are considered. All other bins are assumed to
equal p(1). If D is sufficiently large, (18) can be used as a good approximation of (17).
The contribution of the neglected bins to the probability estimate (17) does obviously
not exceed θ. The aim of DWLB is to train parameters p(1), θ and φj for j < D.
Note that

θ +
D−1∑
j=0

φj = 1 and 0 ≤ p(1) ≤ 1 (19)

must be satisfied when training the parameters. The softmax function can be used
over the set {θ, φj | 0 ≤ j < D} and the sigmoid function can be used for p(1) to
satisfy (19) as follows. Let

θ =
eθ

′

eθ′ +
∑D−1

k=0 e
φ′k
, φj =

eφ
′
j

eθ′ +
∑D−1

k=0 e
φ′k
, and p(1) =

1

1 + e−µ
. (20)

Parameters θ′, φ′j, and µ are the trainable parameters of the architecture. Hence, the
number of trainable parameters for DWLB is D+2. In an experimental configuration,



D can be chosen such that θ does not exceed a predefined threshold. A value of 2048
for D turned out to be sufficiently large for the experiments described in this paper
and is thus used for all experiments. Vice versa, larger values of D did not further
improve the results.

3.3 Constant one and zero inputs for DHW and DWLB

The minimum value for the probability estimate of the DHW and the DWLB ar-
chitecture can approach 0 arbitrarily close while the maximum value can approach
1 arbitrarily close. The arithmetic coding engine of VVC is, however, limited in its
capability to properly reflect extreme probabilities (very close to 1 or 0). Therefore,
it makes sense to avoid extreme probabilities in the estimation. One way to achieve
this is to define maximum and minimum values for the probability estimate and then
apply a clipping operation. However, an experimental evaluation showed that it may
be beneficial to adapt the clipping limits to the context models. In the following,
an alternative technique for avoiding extreme probabilities is presented. Given a
probability estimate p(t) let

p̈(t) = a0 · p(t) + a1 (21)

be the probability estimate with limited maximum and minimum value. Three train-
able parameters a′0, a

′
1, and a′2 are defined from which aj is derived according to the

softmax function

aj = ea
′
j/

2∑
k=0

ea
′
k . (22)

As can be seen from (21), a1 corresponds to the minimum value for the probability
estimate p̈(t). Since a0 +a1 +a2 = 1, the maximum value for the probability estimate
p̈(t) is equal to 1 − a2. This increases the number of trainable parameters by 3 for
each architecture it is applied to. All experimental results for DHW and DWLB in
this paper are created using this constant one and zero concept.

3.4 Training of adaptation rates

The DHW architecture is able to train parameters for weighting pre-defined hypothe-
ses while the DWLB architecture trains weights for previous bins. A further interest-
ing architecture would be one that directly trains the adaptation rates. The DWLB
architecture can be modified to directly train parameters αi instead of the individual
weights for the latest bins. The only required change is to train α instead of θ and φj.
Doing so would correspond to one hypothesis with inertia parameter α. The sigmoid
function is used to ensure that 0 < α < 1. I.e., a trainable variable α′ is defined from
which α is derived according to α = 1/(1 + e−α

′
), which is the sigmoid function. In

order to increase the number of hypotheses trained in this way, the architecture is
duplicated for each additional desired hypothesis, each hypothesis being associated
with an α′i and having an associated probability estimate p̃i(t) according to (18). A



weighted sum is defined as

p̃′(t) =
G∑
i=1

w′i · p̃i(t) (23)

with G being the number of hypotheses. The resulting architecture shall be denoted
data-driven training of alpha (DTA) and p̃′(t) is the associated probability estimate.
In addition to trainable parameters α′i, also the parameters w′i need to be trained and
the sum over weights w′i needs to equal 1 which is achieved by defining corresponding
weights ŵi so that the parameters w′i are derived from ŵi using the softmax function.

Two configurations are tested in this paper: DTA 2 and DTA 3 with 2 and 3
hypotheses, respectively. The constant one and zero concept of Section 3.3 is also
used for DTA which leads to 2G+ 3 trainable parameters.

3.5 Combination of neural network-based weighting of latest bins and hypotheses
weighting

Building up on ideas presented in Sections 3.1, 3.2 and 3.3, another approach denoted
neural network-based weighting of latest bins (NNWLB) was examined. The final
probability estimation p̌(t) is given as the weighted sum of two probability hypotheses
p̄(t) and ṗ(t)

p̌(t) = β · p̄(t) + (1− β) · ṗ(t) (24)

with 0 ≤ β ≤ 1 and β being a trainable parameter. Furthermore, the hypothesis
p̄(t) is not trainable and may itself be, for example, a weighted sum of state-based
hypotheses like (8). Finally, the hypothesis ṗ(t) is the output of a trainable neural
network with the latest K bins as inputs. In essence, a pre-existing probability
estimation p̄(t) and the latest K bins x(t) are fed into a system that yields a final
probability estimation p̌(t) which — if trained correctly — should at least match
the coding efficiency achieved through p̄(t) if not even further improve it. In an

Figure 1: Illustration of the NN path of NNWLB yielding ṗ(t)

Layer 1 Layer 3

dense
layer Re

Lu
bi

as



si
gm

oi
d

in
pu

ts

Layer 2

dense
layer Re

Lu
bi

as

 dense

layer

1 
ou

tp
ut

experimental configuration, the network architecture was chosen as follows. The
value p̄(t) is fed with the output of a pre-trained DHW probability estimation stage
(2B+4 trainable parameters including constant one/zero) as described in Section 3.1
and 3.3. During the training of NNWLB, the parameters of the DHW path are not
trainable and therefore fixed. The second hypothesis ṗ(t) is generated by a fully
connected, multi-layer neural network, as illustrated in Figure 1. The input layer



is formed by concatenating the latest K bins with a constant one and a constant
zero (see Section 3.3) resulting in K + 2 input nodes. Now, two hidden dense layers
follow each featuring N nodes, N biases and ReLU activations ((K + 2) ·N +N and
N · N + N trainable parameters). The final layer has just one output followed by a
sigmoid activation that ensures the output value ṗ(t) is bound by zero and one (N
trainable parameters). Finally, the weighted average of both hypotheses as described
in (24) was implemented using two trainable parameters c̄ and ċ that are normalized
by applying a softmax function. In contrast to DWLB a value of K = 200 for the
number of latest bins seems to be a good (experimentally derived) trade-off. This
results in 202 nodes at the input layer of the neural-network path. In this paper, two
specific architectures NNWLB 10 and NNWLB 100 are examined with N = 10 and
N = 100, respectively.

4 Experimental Evaluation

The Enhanced Compression Model 3.1 (ECM) software [3] is used for the generation of
training and evaluation data is used for all experiments. It contains several enhanced
compression tools beyond VVC that further improve the compression efficiency. The
probability estimation stage features two equally weighted hypotheses per context
model (as in VVC) where the associated adaptation rates ri are optimized for each
context model. For all simulations, bi is set to 63 in order to minimize rounding effects.
Bjøntegaard delta bitrate (BD rate) [4] is used for assessing the compression efficiency.
All BD rates are based on the PSNR YUV = (6 · PSNR Y + PSNR U + PSNR V)/8
as specified in [5].

4.1 Training and validation bitstream generation

Two disjoint sets of video sequences are used. All validation bitstreams are based on
the video sequences as specified in the ECM common test conditions (CTC) of [6].
For training set generation, video sequences of the BVI-DVC testset [7] are employed.
Both sets are encoded using encoder settings as specified in [6] in intra only (AI),
random access (RA), and the low delay (LB) setting. Each video sequence is encoded
using the four quantization parameter (QP) values 22, 27, 32, and 37. The BVI-DVC
testset consists of 800 video sequences which results in 3200 bit streams while the
validation set only consists of 22 video sequences (sequences from classes F and TGM
are not used) which corresponds to 88 bit streams.

4.2 Re-training of context model initializations

In order to create a defined starting point for all simulations, the parameters of all
context models in ECM have been re-trained [8] based on a set of BVI-DVC bitstreams
that were encoded using the common test conditions. This re-training already creates
an overall BD rate reduction of 0.07% for AI, 0.06% for RA, and 0.05% for LB on
the CTC set. ECM with these re-trained context model initializations is used as a
reference for all simulations and for the generation of training and validation sets.



Table 1: BD rate comparison of the various architectures (smaller values correspond to a
better compression). Results for NNWLB 10 and NNWLB 100 are not available for RA
and LB due to extreme encoding runtimes.

Architecture (number of
trainable parameters)

Transcoding
Estimation
and coding

AI RA LB AI RA LB
DHW (32) -0.07% -0.13% -0.16% -0.10% -0.19% -0.32%
DWLB (2053) -0.08% -0.14% -0.17% -0.11% -0.22% -0.35%
DTA 2 (7) -0.06% -0.11% -0.14% -0.06% -0.16% -0.22%
DTA 3 (9) -0.07% -0.12% -0.15% -0.08% -0.18% -0.28%
NNWLB 10 (2184) -0.10% -0.17% -0.19% -0.13%
NNWLB 100 (30534) -0.11% -0.18% -0.20% -0.14%

4.3 Model training setup

The described model architectures have been implemented using TensorFlow [9] ver-
sion 1.15.5 and Python [10] version 3.6. The Adam optimizer [11] was employed
for training. The cost function is − log2(p(t − 1)) if a bin x(t) is equal to 1 and
− log2(1 − p(t − 1)) otherwise, where p(t − 1) is the probability estimate of the re-
spective model architecture. Each context model uses an individual instance of the
respective model architecture. Note that VVC uses initial probabilities that depend
on the quantization parameter (QP) which is an integer between 0 and 63, inclusively.
To achieve a similar configuration, the initial probability values p(1) are trained in-
dependently for each QP value. The three parameters associated with the constant 1
and 0 as described in 3.3 are also trained independently for each QP value while all
other parameters are trained jointly over all QPs.

4.4 Experimental results

The BD rates are shown in Table 1 for AI, RA, and LB. Results in category ‘esti-
mation and coding’ are produced with the ECM software where the respective model
architecture has been implemented. As the ECM software employs Rate-Distortion-
optimization, the probability estimation also has an impact on the encoder decisions.
In contrast, results in the ‘transcoding’ category are produced without changing the
encoder decisions. This can be interpreted as transcoding where only the probability
estimator of existing bitstreams are exchanged with the respective architecture. As
can be seen in Table 1, ‘estimation and coding’ gains are in general larger than the
‘transcoding’ gains. Additionally, the numbers of trainable parameters per context
model are shown in Table 1. The DWLB architecture has a slightly higher coding
efficiency than DHW. This is expected as DWLB is a generalization of DHW (see Sec-
tion 3.2). A small coding gain can be achieved with the DTA 2 architecture although
the VVC estimator (which is used as reference for the BD rates) uses 2 hypotheses as
well. With 3 hypotheses as used in DTA 3, only a slight additional gain is achieved
and it has a performance comparable to DHW. A further increase of the number
of hypotheses of DTA did not lead of an improvement of the coding efficiency. A



more substantial increase of the gain can be achieved with the NNWLB architecture.
Note that the computational complexity and the memory requirements of DWLB
and NNWLB are significantly higher than for DHW and DTA. Consequently, the
trade-off between the computational complexity, the memory requirements, and the
coding gain is much more attractive for DHW and DTA. In particular, DTA 2 might
be an interesting alternative for the probability estimator of VVC.

5 Conclusion

Various probability estimator architectures are derived and optimized by employing
a data-driven approach. An increase of the number of hypotheses, as present in the
DHW and the DTA architecture, causes an increase of the compression efficiency. The
more general DWLB architecture adds a further, slight improvement. More coding
gain can be achieved when combining the DHW approach with a neural network.
This suggests that more complex neural network architectures may be an interesting
topic for future work.

6 References

[1] ITU-T, Rec. H.266: Versatile video coding (VVC), International Telecommunication
Union, Apr. 2022.

[2] Heiko Schwarz et al., “Quantization and entropy coding in the versatile video coding
(vvc) standard,” IEEE Transactions on Circuits and Systems for Video Technology,
vol. 31, no. 10, pp. 3891–3906, 2021.

[3] Muhammed Coban et al., Algorithm description of Enhanced Compression Model 3
(ECM 3), Joint Video Experts Team (JVET), JVET-X2025, 24th Meeting, Oct. 2021.

[4] Gisle Bjøntegaard, Improvements of the BD-PSNR model, ITU-T Q6/16, Video Coding
Experts Group (VCEG), VCEG-AI11, Berlin, Germany, 16-18 Jul. 2008.

[5] ITU-T, Working practices using objective metrics for evaluation of video coding effi-
ciency experiments, Technical Paper ITU-T HSTP-VID-WPOM, Jul. 2020.

[6] Marta Karczewicz and Yan Ye, Common test conditions and evaluation procedures for
enhanced compression tool testing, Joint Video Experts Team (JVET), JVET-X2017,
24th Meeting, Oct. 2021.

[7] Di Ma, Fan Zhang, and David Bull, “Bvi-dvc: A training database for deep video
compression,” IEEE Transactions on Multimedia, pp. 1–1, 2021.

[8] Frank Bossen, Jie Dong, and Heiner Kirchhoffer, Description of Core Experiment 1
(CE1): CABAC Initialization, Joint Video Experts Team (JVET), JVET-N1021, 14th
Meeting, Mar. 2019.

[9] Mart́ın Abadi et al., “TensorFlow: Large-scale machine learning on heterogeneous
systems,” 2015, Software available from tensorflow.org.

[10] Guido van Rossum and Python Dev Team, Python 3.6 Language Reference, Samurai
Media Limited, London, GBR, 2016.

[11] Diederik P. Kingma and Jimmy Ba, “Adam: A method for stochastic optimization,”
2014, https://arxiv.org/abs/1412.6980.


