
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 37, NO. 11, NOVEMBER 2019 2573

Enhanced Machine Learning Techniques for Early
HARQ Feedback Prediction in 5G
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Abstract— We investigate Early Hybrid Automatic Repeat
reQuest (E-HARQ) feedback schemes enhanced by machine
learning techniques as a path towards ultra-reliable and low-
latency communication (URLLC). To this end, we propose
machine learning methods to predict the outcome of the decoding
process ahead of the end of the transmission. We discuss
different input features and classification algorithms ranging
from traditional methods to newly developed supervised autoen-
coders. These methods are evaluated based on their prospects
of complying with the URLLC requirements of effective block
error rates below 10−5 at small latency overheads. We provide
realistic performance estimates in a system model incorporating
scheduling effects to demonstrate the feasibility of E-HARQ
across different signal-to-noise ratios, subcode lengths, channel
conditions and system loads, and show the benefit over regular
HARQ and existing E-HARQ schemes without machine learning.

Index Terms— 5G, mobile communication, low latency com-
munication, physical layer, machine learning, anomaly detection,
deep learning.

I. INTRODUCTION

THE next generation Fifth Generation (5G) wireless
mobile networks is driven by new emerging use

cases, such as Ultra-Reliable Low Latency Communication
(URLLC) [1]. URLLC applications such as tactile Internet,
industrial automation or smart grids contribute to increasing
demands on the underlying communication system which have
not existed as such before [2]. Depending on the actual
application either very low latency or high reliability or a
combination of both are required. In contrast to Long Term
Evolution (LTE), where services were provided in a best effort
manner, 5G networks have to guarantee these requirements.
In particular for URLLC, the ITU proposed an end-to-end
latency of 1 ms and a packet error rate of 10−5 [3]. These
demanding requirements have kicked-off discussions in the
3GPP Rel. 16 standardization process on how to fulfill these.
Self-contained subframes and grant-free access have been
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proposed to address these requirements on the air interface
side [4]. However, the impact on well-known mechanisms in
wireless mobile networks is still unclear. In particular, the
Hybrid Automatic Repeat reQuest (HARQ) procedure poses a
bottleneck for achieving the previously mentioned latencies.

HARQ is a physical layer mechanism that employs feedback
to transmit at higher target Block Error Rate s (BLERs), while
achieving robustness of the transmission by providing retrans-
missions based on the feedback (ACK - acknowledgment/
NACK - non-acknowledgment). However, it imposes an addi-
tional delay on the transmission, designated as HARQ Round
Trip Time (RTT). The HARQ RTT incorporates unavoidable
physical delays, such as processing times (hardware delays),
propagation delays, and Transmission Time Interval s (TTIs),
i.e. the transmission duration. This lead to the abandonment
of HARQ for the 1 ms end-to-end latency use case of URLLC
at least for the initial URLLC specification in Rel. 15 [5].
This decision implied that the code rate had to be lowered
such that a single shot transmission, i.e. no retransmissions
and no feedback, achieves the required BLER. On the one
hand, this simplifies the system design, however on the other
hand it sacrifices the overall spectral efficiency of URLLC
transmissions. Hence, reducing the RTT to a minimum for
enabling HARQ in URLLC becomes a critical issue. Even
use cases allowing regular HARQ retransmissions within the
latency budget, profit from the reduced HARQ RTT enabling
more HARQ iterations, i.e. using a higher code rate for
each re-/transmission due to more HARQ iterations in total
within the latency budget. This improves the overall spectral
efficiency in common HARQ applications.

In this work, we focus on providing the HARQ feedback
earlier by predicting the decoding outcome, designated as
Early HARQ (E-HARQ) in the following. As will be discussed
in detail below, the HARQ RTT is composed of several com-
ponents including propagation delays and processing delays.
Our approach focuses solely on reducing the delay on the
receiver side from the start of reception until the feedback is
sent. Hence, all other components contributing to the HARQ
RTT will be considered fixed for this purpose. E-HARQ
schemes [6], [7] provide the feedback on the decodability of
the received signal ahead of the end of the actual transmission
process. The crucial component in this setting is the classifi-
cation algorithm that provides the feedback, which we aim to
optimize using machine learning techniques.

Earlier approaches addressing the feedback prediction prob-
lem with the sole exception of [8] focused exclusively on
one-dimensional input features as Bit Error Rate (BER)
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estimates in combination with hard thresholding as classifi-
cation algorithms [6], [7]. In [9], authors introduced the so-
called Variable Node Reliability (VNR), as it will be discussed
in Section III-A below, to exploit the substructures of Low-
Density Parity-Check (LDPC) codes for prediction. However,
only a single feature, i.e. a single decoder iteration, in com-
bination with hard thresholding has been used. We expect
improvements in prediction accuracy by extensions in several
directions in combination with more complex classification
algorithms: (a) the evolution of input features through sev-
eral decoder iterations considered for the first time in [8],
(b) higher-dimensional intra-message features that in the ideal
case leverage knowledge about the underlying block code and
(c) history features that leverage information about the channel
state from past submissions that is available at the receiver.

Here we significantly expand the approach put forward
in [8], where we discuss first E-HARQ results empowered
by machine learning techniques. The training and testing is
performed on simulated data obtained from stochastic channel
models, which are widely used for performance evaluations
of physical layer techniques [10]. We present an extended
theoretical discussion in particular including the extension to
multiple retransmissions and a system model that incorporates
scheduling effects for the system evaluation thereby allowing a
much more precise evaluation of the performance of E-HARQ-
systems in realistic environments. On the classification side,
this is supplemented by extended experiments including dif-
ferent input features and classification algorithms such as a
newly developed supervised autoencoder for a larger range
of SNR conditions, subcode lengths and different channel
models.

The paper is organized as follows: In Section II we review
the E-HARQ feedback process and investigate the role of
the classification algorithm in a simple probabilistic model
and in a more realistic setting of limited system resources.
In Section III we discuss machine learning approaches for
the classification problem introducing different input features
and algorithms. The classification performance as well as the
system performance is evaluated in Section IV for different
signal-to-noise ratios, subcode lengths and channel conditions.
We summarize and conclude in Section V.

II. EARLY HARQ FEEDBACK

As discussed in the Introduction, E-HARQ approaches aim
to reduce the HARQ RTT by providing the feedback on the
decodability of the received signal at an earlier stage. This
enables the original transmitter to react faster to the current
channel situation and to provide additional redundancy at
an earlier point. In regular HARQ, the feedback generation
is strongly coupled to the decoding process. In particular,
the receiver applies the decoder on the whole signal repre-
senting the total codeword. An embedded Cyclic Redundancy
Check (CRC) enables to check the integrity of the decoded
bit stream. The result of this check is transmitted back
as HARQ feedback, either acknowledging correct reception
(ACK) or asking for further redundancy (NACK). Providing
early feedback (E-HARQ) implies decoupling the feedback

Fig. 1. Timeline of regular HARQ compared to early HARQ. (HARQ RTT:
HARQ round trip time; TTI: transmission time interval; TRX: processing time
at the receiver; A/N: ACK/NACK feedback transmission; Re-TX: retransmis-
sion; T1: time from initial reception to feedback transmission T2: time from
transmission of feedback to the end of the processing of the retransmission
at the receiver).

generation from the decoding process, which introduces a mis-
prediction probability since the actual outcome is not known
in advance. Although misprediction errors are not avoidable,
the design choices for the prediction affect the system perfor-
mance a lot, i.e. asking for more retransmissions than actually
required (over-provisioning) or less (under-provisioning). The
impact of this design choice is evaluated more in detail in
Section II-C. However, by taking this step, it is possible to
use only a portion of the transmission and thus reducing the
time from the start of the initial reception to transmitting the
feedback (T1). In total, the retransmission is scheduled earlier,
hence also reducing the HARQ RTT, see Fig. 1. The time
for transmitting the feedback and receiving the retransmission
(T2) is not affected by this. For LDPC codes, E-HARQ can
be realized under exploitation of the underlying code structure
by investigating the feedback prediction problem on the basis
of so-called subcodes [9], [11] from the parity-check matrix.
These subcodes are constructed by choosing a subset of rows
from the original parity-check matrix and all the associated
columns, so-called variable nodes [9]. The fraction of the
subcode length to the full codelength with typical values
ranging from 1/2 to 5/6, is designated as subTTI in Fig. 1.
Shorter subcode lengths reduce the RTT but at the same time
render the prediction problem more complicated.

In this section, we first introduce a simple probabilistic
system model in Section II-A to provide an easy tool that eval-
uates the performance of the here presented E-HARQ schemes.
However, this model only provides a measure in means of the
final BLER and additionally implies the assumption of infi-
nite resources by not penalizing unnecessary retransmissions.
Hence, in Section II-B, we provide a more realistic system
model together with the analysis of implications of finite size
systems in Section II-C. This model provides a more suitable
tool to evaluate the performance in practical systems, such as
5G and LTE. The finite-size system argument establishes an
optimal point of operation for the E-HARQ schemes that is
specific for the available system resources and does not exist
in a system with unlimited resources.

A. Probabilistic Model for Single-Retransmission E-HARQ

We analyze single-retransmission E-HARQ in a simple
probabilistic model. The straightforward extension to multiple
retransmissions is discussed in Appendix A. The structure of
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Fig. 2. Probabilistic model for single-retransmission E-HARQ (terminal
nodes in bold face lead to an effective block error). We use binary random
variables e/e′ to reflect the state of the transmission (e/e′ = 0: no block
error, e/e′ = 1: block error) and a binary random variable f to quantify the
feedback sent (f = 0: ACK, f = 1: NACK).

the probabilistic model for E-HARQ is reflected in Figure 2.
After the initial transmission we end up in a block error
state (e = 1) with probability Pe ≡ P (e = 1). Here
we follow the common scheme in imbalanced classification
problems encoding the minority i.e. block error class as
positive, even though the opposite assignment is often used
in the communications literature. In the case e = 0 the
codeword gets decoded correctly irrespective of the feedback
sent and a false positive feedback only implies an unnecessary
transmission, which has no effect on the performance under
the infinite resources assumption. We use a binary random
variable f to reflect ACK (f = 0) or NACK (f = 1) feedback.
In the former case we send either ACK with probability
Pfn ≡ P (f = 0|e = 1), which leads to an effective block
error, or NACK with probability P (f = 1|e = 1) = 1 − Pfn.
In the latter case the message gets retransmitted which leads
to an effective block error with probability Pe′|e = P (e� =
1|e = 1). The value for Pe′|e crucially depends on the design
of the feedback system most notably on the code rate used
for the retransmission. However, one has to keep in mind
that a decreased block error rate for the retransmission due
to a decreased code rate might lead to latency losses due
to the necessity of accommodating longer retransmissions.
For identical retransmissions using an independent channel
realization we would have Pe′|e = Pe or even Pe′|e < Pe if
the decoder makes use of information from both transmissions
for example using chase combining. For later reference we
also define the joint probability Pe∧e′ ≡ Pe · Pe′|e = P ((e =
1) ∧ (e� = 1)). This simple argument leads to an effective
block error probability

pBLE,eff,1 = Pe ·
(
Pfn + (1 − Pfn)Pe′|e

)
= PePfn + Pe∧e′(1 − Pfn) . (1)

The effect of an imperfect feedback channel could be
easily incorporated in this formalism by defining effective
false negative/positive rates but is omitted here for simplicity.
Empirically we can replace Pe and Pe∧e′ by estimated block
error rates and the conditional probability Pfn by the classi-
fier’s false negative rate (FNR) as obtained from the confusion
matrix. Obviously the lowest possible effective BLER is
achieved for perfect feedback, i.e. Pfn = 0, for which we have
pBLE,eff,1 = Pe∧e′ . (1) only depends on the baseline BLERs

Pe and Pe∧e′ and the classifier’s false negative rate Pfn with
leading order contribution given by Pfn ·Pe. In the limit where
the Pfn � Pfb,e the leading behavior is just Pe·Pfb,e and hence
independent of the classification performance.

Considering the question of latency, the simplest metric is
to consider the expected number of retransmissions 〈ΔT1〉,
which relates to the spectral efficiency of the approach. There-
fore we evaluate the probability Pr,1 for a single retransmis-
sion. Again using Figure 2, we obtain

Pr,1 ≡ Pr = Pe(1 − Pfn) + (1 − Pe)Pfp . (2)

As above, the conditional probability Pfp ≡ P (f = 1|e = 0)
can be identified empirically with the classifier’s false positive
rate (FPR). The leading order contribution to (3) is given
by Pe + Pfp and the number of expected retransmissions
therefore profits from a decreased FPR. For the case of a single
retransmission, the expected number of retransmissions 〈ΔT1〉
coincides with the single-retransmission probability,

〈ΔT1〉 = Pr,1 . (3)

These results already hint at the crucial importance of adjust-
ing the classifier’s working point by balancing FNR versus
FPR: A reduction of the FNR leads to a smaller effective block
error probability, see (1), but comes along with an increased
FPR, as the two kinds of classification errors counterbalance
each other. This in turn leads to an increase in latency,
see (3). From the present discussion it might seem a reasonable
strategy to target an arbitrarily small FNR such that the
effective block error probability approaches the theoretical
limit. However, this argument only holds for a system with
unlimited resources, as will be discussed below.

B. System Model

In order to derive a tool for evaluation of the performance
of the discussed predictors, we introduce in this section a
more sophisticated system model that leans on the struc-
ture of today’s mobile network technologies. In cellular net-
works, such as LTE and 5G, Orthogonal Frequency Division
Multiplexing Access (OFDMA) has been established due to
its scheduling flexibility. Especially, opportunistic scheduling
allows to use the best possible channel for a transmission.
Here, we assume a simplified OFDMA system with equally
sized Nres resources, i.e. frequency resources and a defined
transmission duration in time, so-called TTI. The HARQ
mechanism, regular HARQ as well as E-HARQ, requests
based on the received parts of the transmission a retransmis-
sion, which is scheduled at earliest after TRTT time slots.

The main advantage of E-HARQ over regular HARQ is
the reduced HARQ RTT. Hence, depending on the latency
budget more HARQ iterations, i.e. more re-/transmissions each
incorporating feedback from the receiver within the latency
constraint, might be used to improve the system performance.
In the following, we assume the TTI length the default time
unit. In practical systems, there exist several possibilities
to design the TTI length such that it fits the requirements.
The number of Orthogonal Frequency Division Multiplexing
(OFDM) symbols belonging to a TTI or the subcarrier spacing
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TABLE I

SYSTEM EVALUATION PARAMETERS

of the OFDM modulation can be changed, such that the
physical time duration of a TTI scales accordingly. In this
work, we evaluated two different system approaches, long and
short TTI lengths.

The HARQ RTT is mainly comprised by the processing
time, which scales with the TTI length in general [4], and the
time required for transmitting the feedback, which does not
depend on the TTI length. Thus, for long TTI lengths this
time can be considered relatively small. However, for short
TTI lengths this constant component has to be considered for
E-HARQ as well as for regular HARQ systems. Hence, for
long TTIs, we assumed TRTT = 1 for rate-1/2 E-HARQ,
which means that the retransmission is received in the next
TTI, and TRTT = 2 for regular HARQ, so that for regular
HARQ one TTI has to be skipped. Analogously, for short
TTIs, TRTT = 5 for rate-5/6 E-HARQ and TRTT = 6 for
regular HARQ. Depending delay constraint Tc this results to
a maximum number of retransmissions possible within the said
latency budget. For long and short TTIs this allows depending
on the system load up to two retransmissions in the E-HARQ-
scheme compared to only one in the regular HARQ-scheme.
Due to the scalability of the TTI length, the absolute value of
Tc might be set to an arbitrary value, e.g. 1 ms. Thanks to the
previously mentioned opportunistic scheduling possibilities of
OFDMA, we assume that the retransmission is independent of
the previous transmission, i.e. Pe′|e = Pe and the total BLER
Pe,total = (Pe)n+1, where n is the number of retransmissions.
Furthermore, an i.i.d. packet arrival rate PA,UE for each User
Equipment (UE) is assumed. Thus, a single UE can only have
one new transmission per time slot. The arrival rate for the
high load scenario, as given in Table II-B, has been chosen
such that the E-HARQ performance saturates in the URLLC
relevant range. For the medium load scenario, the arrival rate
has been chosen slightly lower such that no saturation behavior
is observable in the relevant range. For simplicity the following
argument is carried for a perfect feedback channel, i.e. for
Pfb,e = 0, which is a reasonable assumption considering
the results of the previous implying that the feedback error
probability is at most of subleading importance. The system
parameters are summarized in Table II-B.

C. Implications of Finite System Size

In practical systems, there is a trade-off between the False-
Negative Rate (FNR) and False-Positive Rate (FPR) due to the

limited amount of available resources. Whereas a lower FNR
increases the effective BLER, as shown in the Section II-A,
it increases the transmission overhead on the other hand.
Depending on the available resources this leads to resource
shortage, also causing additional delays since transmissions
cannot be scheduled in the designated time slots. This brings
us to the term of packet failure rate which is described by
the probability that a packet is delivered successfully within
a given delay constraint, i.e. latency budget Tc. Interestingly,
there is an optimal operation point which captures the trade-off
such that the packet failure rate is minimized.

For the assumptions on the system model described in the
previous section, the packet failure probability is given as

Ppf = (1 − PS,0) + PS,0PePH,e,1 , (4)

where PS,j ≡ P (Tj ≤ Tc) denotes the probability of schedul-
ing j transmissions within the time constraint Tc and PH,e,j

denotes the failure probability after the jth transmission. For
a single retransmission (n = 1) the latter is given by PH,e,1 =
Pfn +(1−Pfn)[(1− PS,1

PS,0
)+ PS,1

PS,0
Pe]. Inserting this expression

into (4) leads to the familiar form (1) up to scheduling
probabilities PS,j . Generalizing to multiple retransmissions,
the error probability for the jth resubmission can be defined
recursively via

PH,e,j =Pfn+(1−Pfn)
[(

1 − PS,j

PS,j−1

)
+ PS,j

PS,j−1
PePH,e,j+1

]
,

(5)

where we set PH,e,j = 1 if j exceeds the maximum number
of retransmissions, i.e. if j > n. As shown above for a single
retransmission, (4) reduces to (1) if one sets all scheduling
probabilities to one. The same applies for multiple retrans-
missions for which one obtains (10). Therefore, (4) can be
seen as a generalized version of the effective BLER.

However, the effective BLER does not consider the finite
resources and thus cannot capture the actual performance of
the evaluated HARQ schemes in a practical implementation.
We will refer to this case as the infinite resource baseline
compared to the finite resource baselines discussed below.

At first glance, (4) suggests minimizing the FNR Pfn.
However, a closer examination reveals that the scheduling
probabilities PS,j carry a dependence on both FNR and
FPR via the underlying resource distribution function, see
Appendix C. FNR and FPR counteract each other in the
sense that a decreased FNR will lead to an increase in the
FPR. Considering the dependency on the resource distribution
function, an increase of the FPR Pfp increases the load on the
system, thus lowers the probability that a transmission and its
retransmission is scheduled within the time constraint. This
fact is already apparent from the expected number of retrans-
mission as obtained in (3) which scales with the FPR at leading
order. This suggests that the packet failure probability seen as
a function of the FNR will show a minimum characterizing an
optimal trade-off between FNR and FPR for the given system
resources.

The derived packet failure probability Ppf within a fixed
latency budget rather than spectral efficiency represents the
most relevant performance metric for practical evaluations.
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Additionally, apart from comparing the different E-HARQ
schemes among each other, it enables a performance com-
parison with regular HARQ, which is crucial if E-HARQ is
considered for URLLC. Here, aside the system setup presented
in the previous section, for regular HARQ the FNR and FPR
is assumed to be zero as false predictions can be neglected
due to the CRC included in the transmission.

III. MACHINE LEARNING FOR EARLY HARQ

The machine learning task of predicting the decodability of
a message based on information from at most the first few
decoder iterations is an inherently imbalanced classification
problem. This imbalance is a direct consequence of the base
BLERs of the order 10−3 that are required in order to be
able to reach effective BLERs of the order 10−5, see (1).
Different ways of dealing with this imbalance have been
explored, see [12] for a review. These can be categorized as
cost-sensitive learning, rebalancing techniques and threshold
moving. The discussion in this section focuses on the latter in
the sense of readjusting the decision boundary of any trained
model that outputs probabilities for the predicted classes, see
also [13] and references therein.

By moving the decision boundary one is able to investigate
the discriminative power of a given classifier over a whole
range of different working points. This is typically analyzed
in terms of Receiver-Operation curves (ROC) or Precision-
Recall (PR) curves. In order to summarize the classifier’s
performance with a single number, one conventionally resorts
to reporting area-under-curve (AUC) metrics. Here we focus
on the PR curve and the corresponding area under the PR
curve, AUC-PR, rather than the ROC-curve as the former has
been shown to better reflect the classifier’s performance for
highly skewed datasets [14], [15]. However, when summa-
rizing the discriminative power of a classifier using a single
figure, one loses fine-grained information about classification
performance at different working points. This is particularly
true since the full AUC naturally covers the whole range values
for the decision boundary, many of which are irrelevant for
practical applications where the classification performance in
the small FNR-regime is most relevant. In addition, the actual
implementation of the classifier requires a definite choice for
the decision threshold. Therefore we supplement the global
AUC-PR information with an analysis based on FNR-PPR
curves. It is worth noting that the FNR-FPR curves directly
relate to ROC curves since the true positive rate TPR that is
plotted on the ordinate of the ROC-curve relates to the FNR via
TPR = 1 - FNR. FNR and FPR represents the natural choice
in our case since they represent the key output figures from
the system point of view, see Sec II-A.

A. Input Features

We distinguish single-transmission-features derived from a
single transmission and history information from past trans-
missions. In principle all these features can be combined at
will to form the set of input features for the classification
algorithm.

The raw data for a single transmission provided by the
simulation is given by (a posteriori) LLR values after different
decoder iterations. E-HARQ approaches to reduce the HARQ
RTT have been first discussed in [6] and [7]. This approach
estimates the BER based on the Log-Likelihood Ratio s
(LLRs) and utilizes a hard threshold to predict the decodability
of the received signal. The LLR gives information on the
likelihood of a bit being either 1 or 0. Denoting y as the
observed sequence at the receiver, the LLR of the kth bit bk

is defined as

L(bk) = log
P (bk = 1|y)
P (bk = 0|y)

. (6)

Having the LLRs of a subcode or the whole codeword allows
to calculate an estimated BER for the received signal vector via

ˆBER =
1
M

∑
k

1
1 + |L(bk)| , (7)

where M is the length of the LLR vector. Based on this metric
the decoding outcome is predicted, where a higher ˆBER means
a lower probability of successful decoding.

A further improved approach has been presented in
[9] and [11]. The authors propose to exploit the code structure
to improve the prediction performance. In case of LDPC
codes, this is realized by constructing so-called subcodes
from the parity-check matrix. Using a belief-propagation based
decoder on the LLRs of the subcodeword results in a posteriori
LLRs:

Λ(j)
k = Λ(j−1)

k +
∑

m∈M(k)

β
(j)
m,k, (8)

where Λ(0)
k ≡ L(bk), M(k) is the set of check nodes

which are associated to the variable node of k and β
(j)
m,k is

the check-to-variable node message from check node m to
variable k. Here we use the superscript j in Λ(j)

k to denote
the decoder iteration after which the posteriori LLRs were
extracted with the obvious identification Λ(0)

k ≡ L(bk). Again,
the a posteriori LLRs are mapped to the same metric for each
belief-propagation iteration, designated as VNR,

VNRj =
1
M

∑
i

1

1 + |Λ(j)
i |

, (9)

where M is the length of the subcodeword and j denotes
the belief-propagation iteration. Hence, VNR0 corresponds to

ˆBER. In [9], the authors used a hard threshold applied VNR5

to predict decodability.
Assuming the receiver is operating on the same channel

across different transmissions, it might be possible to increase
the prediction performance by incorporating information from
previous transmissions. This includes all features used as
single-transmission features and in addition features that are
only available after the end of the decoding process. As two
representative examples for history features we investigate
VNRs from past submissions (VNR_HIST) and information
about the Euclidean distance between the correct codeword
and the received signal vector (EUCD_HIST). Here one has to
keep in mind that the latter information is only available if the
correct codeword is known to the receiver as for example from
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a previous pilot transmission but strictly speaking it cannot
be reliably obtained from an ordinary previous transmission
as even a correct CRC does not imply a correctly decoded
transmission. For a given set of history features we consider
means of the history features under consideration extracted
from different numbers of past transmissions using sliding
windows of length 1,2,5 and 9 in order to allow the classifier to
extract information from past channel realizations at different
time scales.

B. Classification Algorithms

As discussed in the introduction, we can view the problem
either as a heavily imbalanced classification problem or as an
anomaly detection problem. Here we briefly discuss suitable
algorithms for both of approaches. As examples for binary
classification algorithms we consider hard threshold (HT)
classifiers, logistic regression (LR) (with L2 regularization
and balanced class weights) and Random Forests (RF). HT
applied to VNR0/VNR5-data (referred to as HT0 and HT5 in
the following) yield the classifiers used in the literature so
far [6], [9]. For anomaly detection [16] one distinguishes
unsupervised, semi-supervised and supervised approaches
depending on whether only unlabeled examples, only majority-
class examples or labeled examples from both classes are
available for training. As anomaly detection algorithms we
consider Isolation Forests (IF) [17] as classical tree-based
semi-supervised anomaly detection algorithm and supervised
autoencoder (SAE) as a novel neural-network based approach
for supervised anomaly detection, see Appendix B for details.
All classifiers apart from HT0 and HT5 operate on the first six
VNRs VNR0, . . . ,VNR5 as input features. We leverage the
implementations from scikit-learn [18] apart from SAC that
was implemented in PyTorch [19].

IV. RESULTS

A. Simulation Setup

We compare classification performance of different classi-
fiers based on AUC-PR and FNR-FPR curves. As external
parameters we vary the SNR between 3.0 and 4.0 dB which
results to BLERs in the considered URLLC regime taking
the HARQ retransmissions into account, and subcode lengths
between 1/2 and 5/6 to evaluate a rather aggressive prediction
versus a more conservative one. The simulation setup used to
produce training and test data follows the one reported in [9]
and summarized in Table II. We use the raw simulation output
as well as a number of derived features. Here we consider both
single-transmission features as well as history-features that
incorporate information from a number of past transmissions,
see Appendix III-A for a detailed discussion. We then investi-
gate the performance of a number of classification algorithms
operating on these input features, see Appendix III-B for a
detailed breakdown. In all cases we use 1M transmissions
with independent channel realizations for training and evaluate
on a test set comprising at least 1M transmissions. The size
of the test set for each SNR/subcode combination is given
in the second column of Table III. Hyperparameter tuning is
performed once for the pedestrian channel (at SNR 4.0 dB

TABLE II

LINK-LEVEL SIMULATION ASSUMPTIONS FOR
TRAINING AND TEST SET GENERATION

and subcode length 5/6) on an additional validation set also
comprising 1M samples. We standard-scale all different sets
of input features independently using training set statistics.
In this way we obtain a reasonable input normalization that
is required for certain classification algorithms while keeping
relative difference within different input feature groups intact.

B. Classification Performance

We start by discussing the classification performance for
different classification algorithms based on VNR-features
extending the analysis from [8]. The classification results are
compiled in Table III. We compare AUC-PR that characterizes
the overall discriminative power of the algorithm and which
tends to 1 for a perfectly discriminative classifier. The largest
improvements to the simplest thresholding method HT0 is
seen for longer subcode lengths such as 5/6. In these cases
more complex classification methods applied to the full VNR-
range show only small improvements over the HT5 threshold
baseline. A different picture emerges at smaller subcode
lengths. Here using VNRs from higher decoder iterations
(HT5) does not improve or even worsen the classification
performance compared to HT0. Here more complex classi-
fication algorithms show their true strengths and show larger
improvements compared to HT0/HT5. This is a plausible result
since decreasing the subcode length renders the classification
problem more complicated and more complex classifiers can
profit more from this complication. If we assess the difficulty
of the classification problem based on the scores achieved by
the classifiers, a clear picture emerges: As discussed before
decreasing the subcode length for fixed SNR renders the clas-
sification problem more difficult, whereas decreasing the SNR
for fixed subcode length has the opposite effect most notably
because of an increasing BLER. On the other hand the BLER
sets the baseline for the HARQ performance, see (1), which
overcompensates the positive effects of the improved classi-
fication performance. The overall best discriminative power
across different SNR-values, subcode lengths and channel
conditions shows the supervised autoencoder closely followed
by regularized logistic regression. The fact that the AUC-PR
results for LR, RF and SAE are so close just reflects a similar
overall discriminative power of these algorithms despite of
fundamentally different underlying principles.
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TABLE III

COMPARING CLASSIFICATION PERFORMANCE BASED ON AUC-PR (CLASSIFIERS AS SPECIFIED IN SECTION III-B)

Fig. 3. Selected examples for classification performance based on VNR-features in the pedestrian channel.

This does, however, not imply coinciding FNR-FPR curves,
where the classifiers show rather different behavior in certain
FNR regions, see Figure 3 for selected results. Random
Forests, for example, show in general a very good overall
performance but are considerably weaker than other classifiers
in the small FNR-regime. When looking at FNR-FPR curves
as the ones presented in Figure 3, one has to keep in mind
that it is very difficult in the extremely imbalanced regime to
obtain reliable estimates of the FNR as both the numerator
(false negatives) and the denominator (sum of false negatives
and true positives) are small numbers requiring large sample
sizes for a stable evaluation. This applies in particular to the
region of small FNRs below 0.001.

To summarize, we clearly demonstrated that incorporating
the evolution of the VNR across the first five decoder iterations
into more complex classification algorithms such as logistic
regression or supervised autoencoders leads to gains in the
overall classification performance in particular in comparison
to hard threshold baselines. This conclusion holds for various
SNR-values, subcode lengths and channel conditions. Impli-
cations of these findings for the system performance will be
discussed in Section IV-C.

We restrict the investigation of history features to the SAE
classifier as the best-performing classifier from the previous
section. However, we checked that the qualitative conclusions
about the importance of history features hold irrespective of
the classification algorithm under consideration. In Table IV
we discuss the impact of history features on the classifica-
tion performance in addition to the VNR-features discussed
above.

TABLE IV

COMPARING CLASSIFICATION PERFORMANCE BASED ON AUC-PR
UPON INCLUDING HISTORY FEATURES (FOR SAE)

Irrespective of SNR, subcode length and underlying pedes-
trian or vehicular channel model, we see an improvement
in classification performance upon including history features
with best results achieved by incorporating Euclidean distance
features. History information seems to lead to larger improve-
ments in the pedestrian channel compared to the vehicular
channel. This is in line with the channel conditions remaining
unchanged for a longer time in the pedestrian compared to the
vehicular case.

There are different caveats to this result. First of all,
as discussed in Section III-A, the Euclidean distance is only
known to the receiver if the underlying codeword is known
as it would be the case for a previous pilot transmission,
which would however lead to latency overheads. Therefore
the result including Euclidean history features most likely
overestimates the improvements in classification performance
that can be obtained from using history features. Secondly,
the use of history features is at tension with the assumption
of an independent channel realization for the retransmission
in the sense of Pe′|e = Pe as used in our system model.
It is very unlikely that the improvements in classification
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Fig. 4. Selected examples for system performance in the pedestrian channel for two-retransmission E-HARQ with unlimited system resources.

performance can compensate the loss of approximately one
order of magnitude in the error rate for the retransmission
of Pe′|e ≈ 10−2 using the same channel compared to the
baseline BLER of the order of 10−3 for an independent
retransmission. Therefore the system level analysis is carried
out using VNR-features only. Nevertheless the results put
forward here stress the prospects of further investigations of
features that explicitly characterize the channel state such
as explicit channel state information that could have been
obtained by a pilot transmission preceding the transmission.

C. System Performance

We start by discussing system performance based on the
simple probabilistic model for E-HARQ with unlimited sys-
tem resources as introduced in Section II-A. The results
are obtained straightforwardly from the FNR-FPR-curves pre-
sented in Section IV-B using (1) and (3) or the corresponding
generalizations for multiple retransmissions (10) and (17).
Here we adopt Pe′|e = Pe as in Section II-B. Here we
present results for two retransmissions that are possible for
E-HARQ in both TTI scenarios discussed in Section II-B.
In fact, increasing the number of retransmissions beyond
two does not lead to further noticeable improvements in
the given FNR range. In all cases effective BLERs of the
order 10−5 are attainable. Decreasing the subcode length
from 5/6 to 1/2 while keeping the same effective BLER of
1 ·10−5 as a definite example requires an increase of 40% and
45% in retransmissions at SNR 4 dB and 3 dB respectively.
Correspondingly, decreasing the SNR for fixed subcode length
from 4 dB to 3 dB while again keeping the effective BLER
fixed leads to an overhead of 70% and 77% in retransmissions
for subcode 5/6 and 1/2 respectively. However, as discussed
in Section II-C, the presented effective BLERs only represent
theoretical lower bounds for actual packet failure rates that
are achievable in actual systems as they do not incorporate
scheduling effects. In this infinite system setting there is no
distinguished working point for the classifier and the only way
of discriminating between different classifiers in the system
setting is to rank by the number of expected transmissions for
fixed effective error probability.

Figure 5 shows exemplary results of the packet failure
rate over the FNR of the E-HARQ schemes under medium
(PA,UE = 0.3) and high system load (PA,UE = 0.36) together
with the regular HARQ-baseline and the infinite system results
from (10). The upper Figures 5(a) and 5(b) show the long
TTI design, as described in Section II-B, at 3.5 dB. For
the high load (Figure 5(a)) as well as the medium load
(Figure 5(b)) scenarios, the E-HARQ schemes achieve a
superior performance compared to the regular HARQ thanks
to the additional retransmission which is possible within the
same latency constraint. However, a packet failure rate less
than 10−5 is only achieved in the medium load scenario. Here,
we note that the actual performance of the E-HARQ schemes
is approximated well by the approach with infinite resources,
at least for high packet failure rates above 10−5. Only in the
lower region an attenuation of the decrease is visible, whereas
all prediction schemes achieve a comparable performance.
In the high load scenario in Figure 5(a), we see the trade-
off behavior, discussed in Section II-C. The packet failure
rate decreases only up to a certain minimum at the optimal
FNR-FPR trade-off and starts increasing after passing that
point. So, lowering the FNR further after passing that point
increases the packet failure due to the resource shortage. In this
region, the actual performance of the prediction schemes
becomes critical. Hence, SAE and LR have the lowest opti-
mum. HT0 and HT5 perform worse at their optimal operation
points, whereas HT0 is still performing better than HT5.

The resource shortage effect is clearly visible in Figure 6,
where the same load is applied in both scenarios but the
latency constraint is relaxed in Figure Figure 6(b). As obvious
in Figure 6(a), the packet failure rate for all schemes is far
away from the targeted packet failure rate of 10−5. With a
relaxed latency constraint, as shown in Figure Figure 6(b),
the performance is closer to the target packet failure rate.
This improvement is explainable by two effects. First, the
E-HARQ schemes benefit from the additional retransmission,
which is possible in the relaxed latency constraint and thus
in total achieve still a better performance than the regular
HARQ. However, the gap is smaller compared to the nor-
mal latency constraint. Especially in the high load scenario,
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Fig. 5. Exemplary system performance comparison for rate 1/2 and 5/6 prediction schemes in high load and medium load scenarios (green dashed line
indicates FNReval).

the regular HARQ profits from the increased scheduling
flexibility although it can only perform the same number
of HARQ retransmissions. The resource shortage effect is
also observable for the regular HARQ performance com-
paring the medium load and the high load scenarios. It is
notable that the regular HARQ could at least achieve a packet
failure rate less than 10−4 in the medium load scenario,
whereas it is performing even worse in the high load scenario.
We can see that even more clearly in the short TTI design in
Figures 5(c) and 5(d). In the medium load scenario in
Figure 5(d), the regular HARQ achieves a packet failure rate
of almost 10−6, which corresponds approximately to the ideal
performance of HARQ. In this system setup the regular HARQ
makes use of the whole scheduling flexibility and thus, at least
for the medium load scenario, the influence of scheduling
probabilities can be neglected for the regular HARQ. Despite
the limited scheduling flexibilities of the E-HARQ schemes,
they achieve a better performance than the regular HARQ.

However, this changes in the high load scenario in Figure 5(c).
Here, we observe that the regular HARQ benefits from its
scheduling gain and thus, achieves the lower packet failure
rate. In the high load scenario, we see that all prediction
schemes achieve a similar performance, except the HT0 which
is remarkably less performing than the others.

As already visible in the previous results, there is no clear
winning scheme for all the scenarios. However, to compare the
overall performance of the schemes, we introduce the total
score ts =

∑
t log10

Ppfr,s,t

mins Ppfr,s,t
, where t is the enumerator

over all SNRs and prediction rates and s is the enumerator
over all HARQ schemes. In Table V we present the results
for all scenarios, where the ”<” sign indicates that an FNR
larger than the optimal FNR has been used for evaluations.
As already notable in Figure 5, the available data does not
allow arbitrary small FNRs and thus the optimal operation
point cannot be reached for the medium load case. Hence,
we used FNReval = 8 · 10−4 for the medium load evaluations
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Fig. 6. Effects of the scheduling gain in the high load regime for the strict and relaxed latency constraint.

TABLE V

COMPARING SYSTEM PERFORMANCE (PPF ) AT THEIR OPTIMAL FNR-FPR TRADE-OFF, AS DESCRIBED IN SECTION II-C

since it provides a sufficiently reliable estimation. The evalua-
tion at fixed FNR underestimates the overall performance com-
pared to regular HARQ but allow a reliable ranking between
different classifiers. Obviously, for reaching the optimal point
of operation more data is required in the medium load case.

Nevertheless, in the medium load regime, LR achieves by
far the best overall performance. The other E-HARQ schemes
achieve a similar performance, where HT0 is able to achieve
a slightly better performance than the other two. Interestingly
here, SAE has a worse performance compared to LR although
it was the best performing classifier in the previous section.
A closer inspection reveals that for very low FNR SAE
cannot keep up with the other classifiers. Especially that
region, being not relevant for the performance metrics of the
previous section, explains the contradicting results. However,
the expected performance for SAE is observed going to the
high load regime. Here, SAE and LR are the best performing
E-HARQ schemes far ahead HT0, HT5 and regular HARQ.
As already noted in Figure 5, in the high load regime the

performance at higher FNRs is key. Hence, SAE is again in a
well-operating region. In this region, we also note that HT0 is
performing the worst among the classifiers though having the
second-best performance in the medium load regime.

Summa summarum, E-HARQ is able to achieve large gains
in means of packet failure rate compared to regular HARQ
under latency constraints. The rather small performance dif-
ference in medium and high load scenarios stems from the
resolution issue at very small FNRs in the medium load sce-
narios. Especially, LR is a promising approach, which achieves
a good overall performance in high load as well as medium
load regimes. The SAE as best-performing algorithm in the
high-load case and the more extendable approach compared
to LR might provide a viable alternative if the performance at
very low FNRs is improved.

V. SUMMARY AND CONCLUSIONS

In this work we investigated machine learning techniques
for E-HARQ by means of more elaborate classification
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methods to predict the decoding result ahead of the final
decoder iteration. We demonstrated that more complex estima-
tors such as logistic regression or supervised autoencoder that
exploit the evolution of the subcodeword during the first few
decoder iterations lead to quantitative improvements in the pre-
diction performance over baseline results across different SNR
and channel conditions. We put forward a simple probabilistic
model and a more elaborate system model incorporating
scheduling effects to evaluate system performance in a realistic
environment. In this way we were able to demonstrate the
practical feasibility of reaching effective packet error rates
of the order 10−5 as required for URLLC across a range
of different SNRs, subcode lengths and system loads. More
importantly, we showed that enabling more HARQ iterations
by introducing E-HARQ improves the overall reliability over
regular HARQ under strict maximum latency constraints.
We hope to extend this analysis to other URLLC-relevant
scenarios such as MIMO in the future.

Further improvements of the classification performance are
conceivable extending the approach presented in this work.
Our results suggest that history features incorporating channel
information from previous transmissions positively influence
the classification performance but remain to be investigated in
more detail. Similarly it seems very likely that classification
algorithms could profit from intra-message features that go
beyond the simple averaging features such as VNRs con-
sidered in this work, which ideally directly incorporate the
code structure of the underlying channel code. However, such
features suffer from high dimensionality and large correlations.
Here a challenge remains to identify the most discriminative
set of input features and appropriate classification algorithms
to further improve the classification performance.

Ultimately, more advanced classification algorithms, which
are within reach using techniques presented in this work,
might allow more fine-grained feedback instead of a binary
NACK/ACK response. Incorporating this information on the
level of the feedback protocol would allow to design custom
feedback schemes with potentially large latency gains.

APPENDIX A
PROBABILISTIC MODEL FOR MULTIPLE-

RETRANSMISSION E-HARQ

In this section, we present the generalization of the results
from Section II-A. These are obtained straightforwardly using
the same formalism as above. The generalization of the effec-
tive error probability from (1) to the case of n retransmissions
is given by the iterative relation

pBLE,eff,n = PePH,e,1 , (10)

where we defined for j ≤ n

PH,e,j=Pfn+(1−Pfn) · Pe(j)|e(j−1)∧...∧e(0) · PH,e,j+1, (11)

and otherwise PH,e,j = 1, which reduces to (1) for n = 1.
For simplicity we can work with independent retransmissions
i.e. Pe(j) |e(j−1)∧...∧e(0) = Pe, where we used the shorthand
notation Pe(j) |e(j−1)∧...∧e(0) ≡ P(e(j)=1)|(e(j−1)=1)∧...∧(e(0)=1).

Explicit expression for up to three retransmissions are in this
case given by

pBLE,eff,1 = Pe (Pfn + (1 − Pfn)Pe) , (12)

pBLE,eff,2 = Pe(Pfn + (1 − Pfn)Pe

· (Pfn + (1 − Pfn)Pe)) , (13)

pBLE,eff,3 = Pe(Pfn + (1 − Pfn)Pe

· (Pfn + (1 − Pfn)Pe

· (Pfn + (1 − Pfn)Pe))) . (14)

If we denote the set of binary sequences of length n by Sn,
the probability Pr,n for having n retransmissions is given by

Pr,n =
∑

(x0,x1,...xn−1)∈Sn

n−1∏
i=0

(1 − Pfn)xiPfp
1−xi

×
n−1∏
j=0

P(e(j)=xj)|(e(j−1)=xj−1)∧...∧(e(0)=x0) , (15)

which again reduces to (2) for n = 1. Again we may set
P(e(j)=xj)|(e(j−1)=xj−1)∧...∧(e(0)=x0) = Pe for independent
transmissions. In this case Eq. 15 simplifies to

Pr,n = (Pe(1 − Pfn) + (1 − Pe)Pfp)n
. (16)

The total number of expected transmissions 〈ΔTn〉 is then
simply given by

〈ΔTn〉 =
n∑

i=1

i · Pr,i . (17)

APPENDIX B
SUPERVISED AUTOENCODER FOR SUPERVISED

ANOMALY DETECTION

The supervised autoencoder is a neural-network-based
supervised anomaly detection algorithm. It enjoys a number of
advantages compared to for example shallow neural network
classifiers applied directly to the input data that arise from the
fact that the classifier is not applied to the data directly but
rather to the bottleneck features of an autoencoder. Therefore
it is able to work in heavily imbalanced scenarios as the
one considered in this work and does not suffer from highly
correlated input.

For the construction of the SAE we leverage the approach
put forward in [21] albeit in a supervised anomaly detection
setting. Similar to their work we use a regular multi-layer
fully-connected autoencoder with L2 loss as a backbone.
In addition, we jointly train a fully-connected classifier oper-
ating on the bottleneck features that is trained using cross
entropy loss, see Figure 7 The idea behind the joint training
is to allows the autoencoder to not only build a reduced
representation but also to build bottleneck features that contain
most discriminative information for the classification task.
We also experimented with using features derived from the
reconstruction error (measured using cosine distance and
reduced Euclidean distance) as additional input to the classifier
as proposed in [21] but found no improvement.
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Fig. 7. Architecture for supervised anomaly detection using a jointly trained
supervised autoencoder (x: input, xrec: reconstructed input, xbot: bottleneck
features, y: predicted label).

There are multiple ways of preventing overfitting in this
setting: early stopping, reducing the bottleneck dimension,
implementing the SAE as a denoising autoencoder [22] or reg-
ularization using dropout [23]. In our case dropout regulariza-
tion both in the classifier as well as in the autoencoder itself
proved most effective.

The network configuration reads for the autoencoder
[FC(d,25), FC(25,10), FC(10,3), FC(3,10), FC(10,25),
Lin(25,d)] and for the classifier [FC(3,10), FC(10,5),
Lin(5,2), SM] with FC(x,y) ≡ [Lin(x,y), BN, ReLU, DO]
and input dimension d. Here Lin(x,y) denotes a linear
transformation layer, BN a Batch Normalization-layer [24],
ReLU a ReLU activation layer, DO a dropout layer at a
dropout rate fixed via hyperparameter tuning (both 0.2) and
SM a softmax activation layer. Optimization is performed
using the Adam optimizer [25] at learning rate 0.001.
To stabilize training oversampling the minority class samples
by a factor of 100 turned out to be beneficial.

APPENDIX C
SCHEDULING PROBABILITY OF A SYSTEM

WITH FINITE RESOURCES

In (4), P (Tj ≤ Tc) highly depends on the load of the
system, since it is mainly a scheduling problem. Based on the
resource distribution Pres which is discussed in Appendix E,
we can formulate the probability P (Tj ≤ Tc) of scheduling
the initial transmission arriving at time slot t0 > 0 and j − 1
retransmissions within a time constraint Tc as follows,

P (Tj ≤ Tc)

=
Tc−jTRTT−1∑

k0=0

P1(t0, k0)

×
Tc−(j−1)TRTT−1∑

k1=k0+TRTT

P1(t0 + k0 + TRTT, k1 − k0 − TRTT)

· · ·
Tc−1∑

kj=kj−1+TRTT

P1(t0+kj−1+TRTT, kj−kj−1−TRTT)

(18)

where P1(t0, Δt) is the probability that a packet that has
arrived at t0 is scheduled in time slot t0 + Δt. Under
the assumption that the resource distribution function is not
diverging, the initial argument of P1 in (18) is set to t0.
As mentioned before, P1 is the scheduling probability for an
additional transmission assuming that this single transmission
does not affect the system probabilities. So, this means that
from the slots t0 till the slot t0 + Δt − 1 the system is fully
loaded and the observed transmission is not scheduled (random
scheduling). We allow only in slot t0 +Δt a lower load or the
random scheduler picks the observed transmission. Hence, this
is expressed by,

P1(t0, Δt)

≈
Nmax∑

k0=Nres

Pres(k0, t0)
(

1 − Nres

k0 + 1

)

×
(

Nmax∑
k1=Nres

Pres(k1|Nres)
(

1 − Nres

k1 + 1

))(Δt−1)

×
(

Nres−1∑
k=0

Pres(k|Nres) +
Nmax∑

k=Nres

Pres(k|Nres)
Nres

k + 1

)
,

(19)

where Pres is the resource distribution function, which is
discussed in more detail in Appendix E. The scheduling
probability P1 is discussed in further detail in Appendix D.

APPENDIX D
SCHEDULING PROBABILITY IN A MODERATELY

LOADED FINITE SYSTEM

The scheduling probability P1 as the probability that a
transmission arriving at t0 is scheduled after Δt TTIs is
given as

P1(t0, Δt)

=
∞∑

k0=Nres

Pres(k0, t0)
(

1 − Nres

k0 + 1

)

×
∞∑

k1=Nres

Pres(k1|k0)
(

1 − Nres

k1 + 1

)

· · ·
∞∑

k(Δt−1)=Nres

Pres(k(Δt−1)|k(Δt−2))
(

1− Nres

k(Δt−1)+1

)

×
Nres−1∑

k=0

Pres(k|k(Δt−1)) +
∞∑

k=Nres

Pres(k|k(Δt−1))
Nres

k + 1
.

(20)

As obvious, P1 crucially depends on the resource dis-
tribution function Pres(N, t), which is the probability that
N resources arrive at time slot t, and its probability dis-
tribution conditioned on the previous number of resource
arrivals Pres(kt|kt−1). The properties and formulation of this
distribution is evaluated more in detail in Appendix E.

However, P1(t0, Δt) the exact formulation of P1(t0, Δt)
poses computational problems due to the infinite sums and
the exponential growth of computation for increasing Δt.
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Hence, we introduce Lemma 1 to simplify the computation
of the scheduling probability.

Lemma 1: For a moderately loaded system with
∑Nmax

k=0

P (k, t) ≈ 1 and Nmax � Nres, the resource distribution
function is approximated for sufficiently large time slots t by
Pres(Nt, t) ≈ ∑Nres−1

k=0 Pres(k, t − 1)Pres(Nt|k) +
∑Nmax

k=Nres

Pres(k, t − 1)Pres(Nt|Nres).
Proof: Assuming a converging behavior of the resource

distribution function, there exits a time slot t0 and a lower
bound Nmin and an upper bound Nmax, such that

∑Nmax
k=Nmin

Pres(k, t) ≈ 1 for all t ≥ t0. Additionally for an non-
heavily loaded system which is required for URLLC traffic,
we assume Nmax � Nres. Also, the lower bound is assumed
to be sufficiently large, Nmin > Nmax − Nres.

The resource distribution function at time slot t1 > t0 is
formulated as

Pres(Nt1 , t1)=
∞∑

Nt1−1=0

Pres(Nt1−1, t1 − 1)Pres(Nt1 |Nt1−1) .

(21)

The sum can be divided into two regions, below Nres and
above. Since Pres(N, t) → 0 for any N > Nmax and Nmax is
close to the number of resources of the system, we approxi-
mate the conditional function by assuming Nres resources in
the previous time slot. For a moderately loaded system, this is
a valid assumption, since the resource probability distribution
function is decreasing fast for N > Nres. Only for small
arguments Nt close to 0 the deviation increases. However,
the constraint regarding Nmin, which prevents underutiliza-
tion, ensures that Pres(Nt1 |Nt1−1) is getting very small in
that region anyway. Hence, we approximate the conditional
resource distribution probability for Nt−1 > Nres by

Pres(Nt|Nt−1) ≈
Nt∑

n=0

PA(n) · PH(Nt − n|Nres) . (22)

�
Using Lemma 1 for Δt > 0, the scheduling probability is

approximated by

P1(t0, Δt)

≈
Nmax∑

k0=Nres

Pres(k0, t0)
(

1 − Nres

k0 + 1

)

×
(

Nmax∑
k1=Nres

Pres(k1|Nres)
(

1 − Nres

k1 + 1

))(Δt−1)

×
(

Nres−1∑
k=0

Pres(k|Nres) +
Nmax∑

k=Nres

Pres(k|Nres)
Nres

k + 1

)
.

(23)

APPENDIX E
RESOURCE DISTRIBUTION FUNCTION OF

A SYSTEM WITH FINITE RESOURCES

The resource distribution function describes the probability
of having a specific number of resources N to be scheduled
at a time slot t. With the previously mentioned system setup

mainly three components contribute to resource allocations.
The first are the packet arrival processes of the individual
UEs. These pose the main component. Additionally, there
are the HARQ retransmissions, which depend on the error
probability of the underlying channel code for a specific chan-
nel. However, to simplify analysis a uniform BLER has been
assumed for each of the transmissions. The last component
is the overload of the previous time slot due to resource
shortage, which is then transfered to the next time slot. Hence,
the resource distribution is described as

Pres(N, t) =
∑

n,m,o∈S
PA(n)PH(m, t − TRTT)POL(o, t − 1) ,

(24)

with S = {n, m, o ∈ N0 : n + m + o = N}, N ∈ N0

and t ∈ Z and PA(n) being the probability of having n
arrival processes, PH(m) being the probability of having m
HARQ retransmissions in time slot t and POL(o, t) being the
probability of having o resources overload in the time slot t
to be transferred to the next time slot.

The probability of arrival processes for NUE UEs is
described straightforwardly as a binomial distribution for
n ≤ NUE i.e.

PA(n) =
(

NUE

n

)
(PA,UE)n(1 − PA,UE)NUE−n , (25)

and otherwise PA(n) = 0, where PA,UE is the probability
of packet arrival of one UE at one time slot. This modeling
implicitly assumes that one UE can only have at most one new
transmission per time slot.

Formulating PH is a bit more intricate since for a lim-
ited allowed number of HARQ retransmissions initial packet
transmissions have to be distinguished probability-wise from
HARQ retransmissions. This would require to distinguish
initial transmissions and first, second up to n retransmissions
as separate dependencies in Pres and would require to spec-
ify scheduling rules, which would considerably complicate
the whole analysis. However, this limitation is overcome
by allowing unlimited HARQ retransmissions. This implies
that this approach cannot be used to analyze for example
single-retransmission HARQ since the HARQ retransmis-
sion term assuming an infinite number of retransmissions as
implemented below would drastically overestimate the system
load from HARQ retransmissions hence punishing FPR too
much. Hence, PH is given for t ≥ 0 and n ≤ Nres as

PH(n, t) =
∞∑

k=n

Pres(k, t)
(

min(k, Nres)
n

)

· Pr
n(1 − Pr)(min(k,Nres)−n) , (26)

and otherwise PH(n, t) = 0 except for PH(0, t < 0) = 1,
where Nres is the number of system resources per time
slot, TRTT is the HARQ RTT and the single-retransmission
probability Pr = (1 − Pfn)Pe + Pfp(1 − Pe) as in (3).
Because of notational reasons, we chose using an infinite
sum, which can be easily replaced by splitting the sum
at Nres and replacing the part from Nres + 1 to ∞ by(
1 −∑Nres

k=0 Pres(k, t − TRTT )
) (

Nres
n

)
(Pr)n(1 − Pr)(Nres−n).
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Fig. 8. Non-converging and converging resource distribution functions over
time of an overloaded system (left) and a balanced system (right).

Still, this way of evaluating the HARQ-contributions in the
system still overestimates the load from retransmissions and
therefore underestimates the system performance.

The last component POL is simply defined by a back
reference to the resource distribution function in the previous
slot i.e.

POL(n, t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Pres (Nres + n, t) , if t ≥ 0 ∧ n > 0∑Nres

k=0
Pres(n, t), if t ≥ 0 ∧ n = 0

1, if t < 0 ∧ n = 0
0, otherwise

(27)

For the sake of simplicity, we may assume TRTT = 1. This
assumption makes the resource distribution function at time
slot t only dependent on the previous time slot t− 1 and is a
valid assumption for the evaluated early HARQ schemes.

Here, the interesting question is, if the resource distribu-
tion converges for t → ∞. By simulating the propagation
of Pres(N, t) over t, we gain an insight on that question,
as presented in Figure 8. As obvious in Figure 8(a), choosing
the parameters such that the system is massively overloaded
results in divergence of the resource distribution function.
However, in case of a balanced system the resource distribution
function shows a strong convergence behavior, as noticeable
in Figure Figure 8(b). From (24), the conditioned resource
distribution function for t > 0 and Nt ≥ Nt−1 − Nres

follows as

Pres(Nt|Nt−1) =
Nup∑
n=0

PA(n)PH(Nup − n|Nt−1) , (28)

where Nup = Nt − max(Nt−1 − Nres, 0) and for m ≤
min(Nres, Nt−1)

PH(m|Nt−1) =
(

min(Nt−1, Nres)
m

)
· (Pr)m(1 − Pr)(min(Nt−1,Nres)−m) , (29)

otherwise PH(m|Nt−1) = 0.

REFERENCES

[1] R. El-Hattachi and J. Erfanian, “NGMN 5G white paper,” Next Gener-
ation Mobile Networks, Frankfurt, Germany, Tech. Rep. 1.0, Feb. 2015.

[2] T. Fehrenbach, R. Datta, B. Göktepe, T. Wirth, and C. Hellge, “URLLC
services in 5G low latency enhancements for LTE,” in Proc. 88th IEEE
Veh. Technol. Conf. (VTC Spring), Aug. 2018, pp. 1–6.

[3] IMT Vision—Framework and Overall Objectives of the Future Develop-
ment of IMT for 2020 and Beyond, document ITU-R M.2083-0, 2015.

[4] K. Takeda, L. H. Wang, and S. Nagata, “Latency reduction toward 5G,”
IEEE Wireless Commun., vol. 24, no. 3, pp. 2–4, Jun. 2017.

[5] MCC Support, “Report of RAN1#92b v1.0.0,” 3GPP, Tech. Rep.
R1-1805801, Apr. 2018, pp. 127–128.

[6] G. Berardinelli, S. R. Khosravirad, K. I. Pedersen, F. Frederiksen, and
P. Mogensen, “Enabling early HARQ feedback in 5G networks,” in Proc.
83rd IEEE Veh. Technol. Conf. (VTC Spring), May 2016, pp. 1–5.

[7] G. Berardinelli, S. R. Khosravirad, K. I. Pedersen, F. Frederiksen, and
P. Mogensen, “On the benefits of early HARQ feedback with non-ideal
prediction in 5G networks,” in Proc. Int. Symp. Wireless Commun. Syst.
(ISWCS), Sep. 2016, pp. 11–15.

[8] N. Strodthoff, B. Göktepe, T. Schierl, W. Samek, and C. Hellge,
“Machine learning for early HARQ feedback prediction in 5G,” in Proc.
IEEE Globecom (GC) Workshops, Dec. 2018, pp. 1–6.

[9] B. B. Göktepe, S. Fähse, L. Thiele, T. Schierl, and C. Hellge, “Subcode-
based early HARQ for 5G,” in Proc. IEEE Int. Conf. Commun. (ICC)
Workshops, May 2018, pp. 1–6.

[10] Study on Channel Model for Frequency Spectrum Above 6 GHz, docu-
ment 3GPP, TR 38.900 v15.0.0, Jun. 2018.

[11] Agressive Early Hybrid ARQ for NR, document TR1-1700647 3GPP
RAN1-NR#1 Spokane (US), Fraunhofer HHI, Jan. 2017.

[12] P. Branco, L. Torgo, and R. Ribeiro, “A survey of predictive modeling
under imbal-anced distributions,” ACM Comput. Surv., vol. 49, no. 2,
pp. 1–31, 2016.

[13] G. Collell, P. Drazen, and P. Kaustubh, “Reviving threshold-
moving: A simple plug-in bagging ensemble for binary and multi-
class imbalanced data,” 2016, arXiv:1606.08698. [Online]. Available:
https://arxiv.org/abs/1606.08698

[14] B. Kiran, T. Dilip, and P. Ranjith, “An overview of deep learning based
methods for unsupervised and semi-supervised anomaly detection in
videos,” J. Imag., vol 4, no. 2, p. 36, 2018.

[15] J. Davis and M. Goadrich, “The relationship between precision-recall
and ROC curves,” in Proc. 23rd Int. Conf. Mach. Learn. (ICML),
New York, NY, USA, 2006, pp. 233–240.

[16] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A survey,”
ACM Comput. Surv., vol. 41, no. 3, pp. 15:1–15:58, Jul. 2009.

[17] F. T. Liu, K. M. Ting, and Z.-H. Zhou, “Isolation forest,” in Proc. 8th
IEEE Int. Conf. Data Mining (ICDM), Dec. 2008, pp. 413–422.

[18] F. Pedregosa et al., “Scikit-learn: Machine learning in python,” J. Mach.
Learn. Res., vol. 12, pp. 2825–2830, Oct. 2011.

[19] A. Paszke et al., “Automatic differentiation in PyTorch,” in Proc.
31st Conf. Neural Inf. Process. Syst. (NIPS) Workshop Autodiff, 2017,
pp. 1–4.

[20] MCC Support, document 3GPP TS 38.212 v1.0.1, Sep. 2017, pp. 19–30.
[21] B. Zong et al., “Deep autoencoding Gaussian mixture model for unsuper-

vised anomaly detection,” in Proc. Int. Conf. Learn. Represent. (ICML),
2018, pp. 1–19.

[22] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol, “Extracting
and composing robust features with denoising autoencoders,” in Proc.
25th Int. Conf. Mach. Learn. (ICML), 2008, pp. 1096–1103.

[23] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “Dropout: A simple way to prevent neural networks
from overfitting,” J. Mach. Learn. Res., vol. 15, no. 1, pp. 1929–1958,
2014.

[24] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” in Proc. 32nd
Int. Conf. Mach. Learn. (ICML), 2015, pp. 448–456.

[25] D. P. Kingma and J. Ba, “Adam: A method for stochastic opti-
mization,” 2014, arXiv:1412.6980. [Online]. Available: https://arxiv.
org/abs/1412.6980

Nils Strodthoff received the Dr.rer.nat. degree
(Hons.) (summa cum laude) from the Technis-
che Universität Darmstadt in 2012. He joined
the Machine Learning Group, Fraunhofer Heinrich
Hertz Institute, as a Research Scientist, in 2017.
He studied physics at Georg-August-Universität
Göttingen and Imperial College London from
2005 to 2009. He held postdoctoral appointments at
Ruprecht-Karls-Universität Heidelberg from 2012 to
2015 as well as the Lawrence Berkeley National
Laboratory, USA, from 2016 to 2017, supported

by the DFG Research Fellowship. He has authored more than 25 peer-
reviewed articles presented at numerous international conferences. He is a
machine learning enthusiast and particularly interested in applications of deep
learning in communications, biomedical signal processing, and proteomics.
He has received the HGS-HIRe Excellence Award in 2011. He has received
scholarships from Deutsche Studienstiftung and HGS-HIRe.



STRODTHOFF et al.: ENHANCED MACHINE LEARNING TECHNIQUES FOR EARLY HARQ FEEDBACK PREDICTION IN 5G 2587
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