Aktuelle Publikationen

April 2020

Artificial Intelligence in Dentistry: Chances and Challenges

Falk Schwendicke, Wojciech Samek, Joachim Krois

AI solutions have not by large entered routine dental practice, mainly due to (1) limited data availability, accessibility, structure and comprehensiveness, (2) lacking methodological rigor and standards in their development, (3) and practical questions around the value and usefulness of these solutions, but also ethics and responsibility. This paper describes the chances of AI in medicine and dentistry.


April 2020

Going beyond Free Viewpoint: Creating Animatable Volumetric Video of Human Performances

Anna Hilsmann, Oliver Schreer, Peter Eisert, Ingo Feldmann, Philipp Fechteler, Wolfgang Paier, Wieland Morgenstern

We present an end-to-end pipeline for the creation of high-quality animatable volumetric video content of human performances. Going beyond the application of free-viewpoint volumetric video, we allow re-animation of an actor’s performance through (i) the enrichment of the captured data with semantics and animation properties and (ii) hybrid geometry- and video-based animation combined with neural infilling.


April 2020

Resolving Challanges in Deep Learning-Based Analyses of Histopathological Images using Explanation Methods

Miriam Hägele, Klaus-Robert Müller, Wojciech Samek, Alexander Binder, Frederick Klauschen, Sebastian Lapuschkin, Philipp Seegerer, Michael Bockmayr

This work shows the application of explainable AI (XIA) methods to resolve common challenges encountered in deep learning-based digital histopathology analyses. We investigate three types of biases and show that XAI techniques are helpful and highly relevant tool for the development and the deployment phases of real-world applications in digital pathology.


März 2020

High performance BH InAs/InP QD and InGaAsP/InP QW mode-locked lasers as comb and pulse sources

Marlene Zander, Martin Schell, Martin Moehrle, Wolfgang Rehbein, Jan C. Balzer, Steffen Breuer, Dieter Franke, Kevin Kolpatzeck

Coherent comb lasers may serve as a source for multiwavelength modulators in short reach transmission, or for phase controlled OFDM channels in long reach. We explore and compare quantum dot (QD) and quantum well (QW) lasers with more than 33 channels in the DWDM 50 GHz grid, thus enabling > 1 Tb/s optical transmission. In addition, the mode-locked devices can be applied as pulse sources with < 500 fs pulses by using a simple SMF.


März 2020

Trends and Advancements in Deep Neural Network Communication

Felix Sattler, Thomas Wiegand, Wojciech Samek

Deep models are also being increasingly applied in distributed settings, where the data are separated by limited communication channels and privacy constraints. To address the challenges, a wide range of training and evaluation schemes have been developed, which require the communication of neural network parametrizations. This paper gives an overview over the recent advancements and challenges.


Februar 2020

Determination of the optical properties of cholesteatoma in the spectral range of 250 to 800 nm

Eric Wisotzky, Peter Eisert, Anna Hilsmann, Florian Uecker, Philipp Arens, Steffen Dommerich

We determine the absorption and scattering coefficients of cholesteatoma and bone. In the near-UV and visual spectrum, clear differences exist between both tissues. These differences reveal the future possibility to detect and identify, automatically or semi-automatically, cholesteatoma tissue for active treatment decisions during image-guided surgery leading to a better surgical outcome.


Februar 2020

Hybrid Human Modeling: Making Volumetric Video Animatable

Peter Eisert, Anna Hilsmann

Photo-realistic modeling and rendering of humans is extremely important for VR environments. While purely computer graphics modeling can achieve highly realistic human models, achieving real photo-realism with these models is computationally extremely expensive. Therefore, we enrich volumetric video with semantics and animation properties to make photo-realistic volumetric video animatable.


Januar 2020

DeepCABAC: A Universal Compression Algorithm for Deep Neural Networks

Simon Wiedemann, Heiner Kirchhoffer, Stefan Matlage, Paul Haase, Arturo Marban, Talmaj Marinc, David Neumann, Tung Nguyen, Ahmed Osman, Heiko Schwarz, Detlev Marpe, Thomas Wiegand, Wojciech Samek

This paper presents DeepCABAC, a universal compression algorithm for deep neural networks (DNNs) that through its adaptive, context-based rate modeling, allows an optimal quantization and coding of parameters. It compresses DNNs up to 5% of their original size with no accuracy loss and has been selected as basic compression technology for the emerging MPEG-7 part 17 standard on DNN compression.


Januar 2020

UDSMProt: Universal Deep Sequence Models for Protein Classification

Nils Strodthoff, Wojciech Samek, Patrick Wagner, Markus Wenzel

Inferring the properties of protein from its amino acid sequence is a key problem in bioinformatics. We put forward UDSMProt, a universal deep sequence model that is pretrained on a language modeling task and finetuned on protein classification tasks. For enzyme class prediction, gene ontology prediction and remote homology and fold detection, we reach sofa performance from the sequence alone.


August 2019

Projection Distortion-based Object Tracking in Shader Lamp Scenarios

Niklas Gard, Peter Eisert, Anna Hilsmann

We enable dynamic projection mapping on 3d objects and present a model-based tracking strategy for projector camera-systems, which directly takes advantage from the projected content for pose estimation. Our method establishes a distortion free projection by first analysing and then correcting the distortion of the projection in a closed loop. Therefor an optical flow-based model is extended to the geometry of a projector-camera unit. We evaluate our procedure with real and synthetic images and obtain very precise registration results.



Ergebnisse pro Seite10ǀ20ǀ30
Ergebnisse 31-40 von 45
<< < 1 2 3 4 5 > >>