Aktuelle Publikationen

Dezember 2023

L4S Congestion Control Algorithm for Interactive Low Latency Applications over 5G

Jangwoo Son, Thomas Schierl, Cornelius Hellge, Yago Sanchez de la Fuente, Christian Hampe, Dominik Schnieders

In recent years, immersive applications such as Cloud XR have emerged, which require very low latency to ensure a high quality of experience. This paper presents a congestion control algorithm combined with L4S to achieve stable and low latency...


Dezember 2023

Guard-ring free InGaAs/InP single photon avalanche diodes for C-band quantum communication

Pascal Rustige, Patrick Runge, Martin Schell, Jan Krause, Lorenz Eckoldt

We present a guard-ring free InGaAs/InP single photon avalanche diode with 20 µm diameter for the optical C-band. At 225 K, 25.6 µs dead time and 17% detection efficiency, the dark count rate is 3 kcps with 0.5% afterpulsing probability. This...


November 2023

From Empirical Measurements to Augmented Data Rates: A Machine Learning Approach for MCS Adaptation in Sidelink Communication

Asif Abdullah Rokoni, Slawomir Stanczak, Martin Kasparick, Daniel Schäufele

Due to the lack of a feedback channel in the C-V2X sidelink, finding a suitable MCS level is a difficult task. In this paper, we propose an ML approach that uses quantile prediction to predict the MCS level with the highest achievable data rate....


November 2023

Design and Characterization of Dispersion-Tailored Silicon Strip Waveguide toward Wideband Wavelength Conversion

Hidenobu Muranaka, Tomoyuki Kato, Shun Okada, Tokuharu Kimura, Yu Tanaka, Tsuyoshi Yamamoto, Isaac Sackey, Gregor Ronniger, Robert Elschner, Carsten Schmidt-Langhorst, Takeshi Hoshida

One of cost-effective ways to increase the transmission capacity of current standard wavelength division multiplexing (WDM) transmission systems is to use a wavelength band other than the C-band to transmit in multi-band. We proposed the concept...


November 2023

Hybrid integration of Polymer PICs and InP optoelectronics for WDM and SDM terabit intra-DC optical interconnects

Efstathios Andrianopoulos, Christos Kouloumentas, Patrick Runge, Norbert Keil, Martin Moehrle, Ute Troppenz, Annachiara Pagano, David de Felipe Mesquida, Michael Theurer, Martin Kresse, Hercules Avramopoulos, Anna Chiado Piat, Panos Groumas, Christos Tsokos, Paraskevas Bakopoulos, Madeleine Weigel, Maria Massaouti, Zerihun Tegegne, Giorgos Megas

This paper presents a hybrid photonic integration concept based on the use of a polymer motherboard, InP EML arrays and InP PD arrays to realize WDM and SDM Terabit optical engines operating at 100-Gb/s or even at 20! 0-Gb/s per lane. The optical...


November 2023

Shortcomings of Top-Down Randomization-Based Sanity Checks for Evaluations of Deep Neural Network Explanations

Alexander Binder, Klaus-Robert Müller, Wojciech Samek, Grégoire Montavon, Sebastian Lapuschkin, Leander Weber

While the evaluation of explanations is an important step towards trustworthy models, it needs to be done carefully, and the employed metrics need to be well-understood. Specifically model randomization testing is often overestimated and regarded...


November 2023

Optimizing Explanations by Network Canonization and Hyperparameter Search

Frederick Pahde, Wojciech Samek, Alexander Binder, Sebastian Lapuschkin, Galip Ümit Yolcu

Rule-based and modified backpropagation XAI methods struggle with innovative layer building blocks and implementation-invariance issues. In this work we propose canonizations for popular deep neural network architectures and introduce an XAI...


November 2023

Revealing Hidden Context Bias in Segmentation and Object Detection through Concept-specific Explanations

Maximilian Dreyer, Thomas Wiegand, Wojciech Samek, Sebastian Lapuschkin, Reduan Achtibat

Applying traditional post-hoc attribution methods to segmentation or object detection predictors offers only limited insights, as the obtained feature attribution maps at input level typically resemble the models' predicted segmentation mask or...


November 2023

Reveal to Revise: An Explainable AI Life Cycle for Iterative Bias Correction of Deep Models

Frederick Pahde, Wojciech Samek, Sebastian Lapuschkin, Maximilian Dreyer

State-of-the-art machine learning models often learn spurious correlations embedded in the training data. This poses risks when deploying these models for high-stake decision-making, such as in medical applications like skin cancer detection. To...


November 2023

Channel estimation with Zadoff–Chu sequences in the presence of phase errors

Sven Wittig, Wilhelm Keusgen, Michael Peter

Due to their perfect periodic autocorrelation property, Zadoff–Chu sequences are often used as stimulus signals in the measurement of radio channel responses. In this letter, the cross-correlation of a linear shift-invariant system's response to...



Ergebnisse pro Seite10ǀ20ǀ30
Ergebnisse 21-30 von 268
<< < 1 2 3 4 5 6 7 8 > >>