Recent publications

October 2023

Pre-Training with Fractal Images Facilitates Learned Image Quality Estimation

Malte Silbernagel, Thomas Wiegand, Peter Eisert, Sebastian Bosse

Current image quality estimation relies on data-driven approaches, however the scarcity of annotated data poses a bottleneck. This paper introduces a novel pre-training approach utilizing synthetic fractal images. The proposed method is tested on...


October 2023

A Differentiable Gaussian Prototype Layer for Explainable Fruit Segmentation

Michael Gerstenberger, Peter Eisert, Sebastian Bosse, Steffen Maaß

We introduce a GMM Layer for gradient-based prototype learning. It is used to cluster feature vectors by computing their probabilities for each gaussian and using the soft cluster assignment for prediction. Hence prototypical image regions can be...


October 2023

Design and Fabrication of Crossing-free Waveguide Routing Networks using a Multi-layer Polymer-based Photonic Integration Platform

Madeleine Weigel, Martin Schell, Moritz Kleinert, Crispin Zawadzki, David de Felipe Mesquida, Martin Kresse, Norbert Keil, Hauke Conradi, Anja Scheu, Jakob Reck, Klara Mihov

A novel 16x4 crossing-free waveguide routing network on four layers of polymer-based stacked waveguides is presented. The design and fabricated device combine in-plane passive waveguide structures with vertical multimode interference couplers to...


September 2023

From Attribution Maps to Human-Understandable Explanations through Concept Relevance Propagation

Reduan Achtibat, Thomas Wiegand, Sebastian Bosse, Wojciech Samek, Sebastian Lapuschkin, Maximilian Dreyer, Ilona Eisenbraun

We introduce the Concept Relevance Propagation (CRP) approach, which combines the local and global perspectives and thus allows answering both the ‘where’ and ‘what’ questions for individual predictions. We demonstrate the capability of our...


September 2023

When it comes to Earth observations in AI for disaster risk reduction, is it feast or famine? A topical review

Monique Kuglitsch, Jackie Ma, Arif Albayrak, Allison Craddock, Andrea Toreti, Elena Xoplaki, Jürg Lüterbacher, Paula Padrino Vilela, Rui Kotani, Dominique Berod, Jon Cox

Given the number of in situ and remote (e.g. radiosonde/satellite) monitoring devices, there is a common perception that there are no limits to the availability of EO for immediate use in such AI-based models. However, a mere fraction of EO is...


September 2023

FedAUX: Leveraging Unlabeled Auxiliary Data in Federated Learning

Felix Sattler, Wojciech Samek, Roman Rischke, Tim Korjakow

In this work, we propose FEDAUX, an extension to Federated Distillation, which, under the same set of assumptions, drastically improves the performance by deriving maximum utility from the unlabeled auxiliary data. Our proposed method achieves...


September 2023

Hybrid semantic clustering of 3D point clouds in construction

Marcus Zepp

In this work, we present an artificial intelligence (AI)-based semantic segmentation approach for three-dimensional (3D) point clouds which were generated from 2D images with a structure from motion (SfM) pipeline. We utilize state-of-the-art...


September 2023

3D Hyperspectral Light-Field Imaging: a first intraoperative implementation

Eric Wisotzky, Peter Eisert, Anna Hilsmann

Hyperspectral imaging is an emerging technology that has gained significant attention in the medical field due to its ability to provide precise and accurate imaging of biological tissues. The current methods of hyperspectral imaging, such as...


September 2023

Automatic Registration of Anatomical Structures of Stereo-Endoscopic Point Clouds

Sophie Beckmann, Peter Eisert, Anna Hilsmann, Jean-Claude Rosenthal, Eric Wisotzky

In this paper, we present an analysis and registration pipeline for confined point clouds acquired by stereo endoscopes into a fused representation. For a coarse registration, TEASER is applied, while a refinement is conducted utilizing...


September 2023

Unsupervised learning of style-aware facial animation from real acting performances

Wolfgang Paier, Peter Eisert, Anna Hilsmann

This paper presents a novel approach for text/speech-driven animation of a photo-realistic head model based on blend-shape geometry, dynamic textures, and neural rendering. Training a VAE for geometry and texture yields a parametric model for...



Items per page10ǀ20ǀ30
Results 11-20 of 241
<< < 1 2 3 4 5 6 7 8 > >>